Newer
Older
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
class Plotter:
def __init__(self, dataset: Dataset):
def customize_plot(self, fig, ax, styling_params) -> None:
""" customize_plot
Args:
fig (plt.figure.Figure),
ax (plt.axes.Axes),
styling_params (dict)
Returns:
None
"""
ax.set_title(styling_params["title"])
def distribution_plot(self, target) -> None:
""" plot a distribution plot.
Args:
target (str, must be present as a column in the dataset),
styling_params (dict)
Returns:
None
"""
grouped_data = self.df.groupby(target).size()
plt.barh(grouped_data.index, grouped_data.values)
print(
str(grouped_data),
str(grouped_data.index),
str(grouped_data.values),
)
plt.xlabel("Size")
plt.ylabel(target)
plt.title(f"Distribution of {target}")
def plot_categorical_bar_chart(
self, category1, category2, styling_params={}
) -> None:
""" plot a categorical bar chart.
Args:
category1 (str, must be present as a column in the dataset),
category2 (str, must be present as a column in the dataset),
styling_params (dict)
Returns:
None
"""
ct = pd.crosstab(self.df[category1], self.df[category2])
ct_percent = ct.apply(lambda r: r / r.sum() * 100, axis=0)
self.customize_plot(fig, ax, styling_params)
def plot_categorical_boxplot(
self, target, category, styling_params={}
) -> None:
""" plot a categorical boxplot.
Args:
target (str, must be present as a column in the dataset),
category (str, must be present as a column in the dataset),
styling_params (dict)
Returns:
None
"""
fig, ax = plt.subplots()
self.customize_plot(fig, ax, styling_params)
sns.boxplot(x=category, y=target, data=self.df, palette="rainbow")
def plot_categorical_histplot(
self, target, category, styling_params={}, bins=30
) -> None:
""" plot a categorical hisplot.
Args:
target (str, must be present as a column in the dataset),
category (str, must be present as a column in the dataset),
styling_params (dict)
Returns:
None
"""
uniques = self.ds.get_unique_column_values(category)
fig, ax = plt.subplots()
self.customize_plot(fig, ax, styling_params)
for val in uniques:
anx_score = self.df[self.df[category] == val][target]
anx_score_weights = np.ones(len(anx_score)) / len(anx_score)
ax.hist(
anx_score,
weights=anx_score_weights,
def plot_scatterplot(self, target1, target2, styling_params={}) -> None:
""" plot a scatterplot.
Args:
target1 (str, must be present as a column in the dataset),
target2 (str, must be present as a column in the dataset),
styling_params (dict)
Returns:
None
"""
fig, ax = plt.subplots()
self.customize_plot(fig, ax, styling_params)
ax.scatter(self.df[target1], self.df[target2])