Skip to content
Snippets Groups Projects
Plotter.py 1.59 KiB
Newer Older
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import seaborn as sns
from .Dataset import Dataset

class Plotter:
    def __init__(self, dataset: Dataset):
        self.ds = dataset
        self.df = dataset.get_dataframe()

    
    def customize_plot(self, fig, ax, styling_params):
        if styling_params.get('title'):
            ax.set_title(styling_params["title"])

    def plot_categorical_bar_chart(self, category1, category2, styling_params = {}):
        ct = pd.crosstab(self.df[category1], self.df[category2])
        # Calculate percentages by row
        ct_percent = ct.apply(lambda r: r/r.sum() * 100, axis=0)                
        fig, ax = plt.subplots()
        self.customize_plot(fig, ax, styling_params)
        ct_percent.plot(kind='bar', ax=ax)


    def plot_categorical_boxplot(self, target, category, styling_params = {}):
        fig, ax = plt.subplots()
        self.customize_plot(fig, ax, styling_params)
        sns.boxplot(x=category,y=target,data=self.df, palette='rainbow')


    def plot_categorical_histplot(self, target, category, styling_params = {}, bins= 30):
        uniques = self.ds.get_unique_column_values(category)
        fig, ax = plt.subplots()
        self.customize_plot(fig, ax, styling_params)
        for val in uniques:
            anx_score = self.df[self.df[category] == val][target]
            anx_score_weights = np.ones(len(anx_score)) / len(anx_score)
            ax.hist(
                anx_score,
                weights=anx_score_weights,
                bins = bins,
                alpha=0.5,
            )