Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
%--------------------------------------------------------------------------
% PREPARE GRIDS
%--------------------------------------------------------------------------
%
% addpath('.\mfiles')
% ALT (elevation model)
clear
dem=GRIDobj('./Topo/cop30DEM_utm32n_hochrhein_carved_filled.tif');
dem = resample(dem,60);dem = crop(dem);
dem.name = 'hochrhein_60m';
% RAIN (sources (>0) and sinks (-1))
rain = GRIDobj('.\Topo\map_wc2.tif'); % MAP after WorldClim2 (mm/yr/m^2)
rain = resample(rain,dem);
rain = rain/1000; % convert to m/yr/m^2
rain = rain/3600/24/365.25; % convert to m/s/m^2
upstream = GRIDobj('.\Topo\rain_boundaries_ms-1.tif');
upstream = resample(upstream,dem);
upstream.Z(isnan(upstream.Z))=0;
inflow_factor = 2.45;
rain = (rain+upstream)*inflow_factor;
% INFLOWS
inflow_rhine = 346*inflow_factor; % (m^3/s)
% inflow_rhine_y = [273:279]; % y-location (column) of inlet
% inflow_rhine_x = ones(7,1)'*3266; % x-location (row) of inlet
inflow_rhine_y = [137:140]; % y-location (column) of inlet
inflow_rhine_x = ones(4,1)'*1632; % x-location (row) of inlet
inflow_rhine = inflow_rhine/length(inflow_rhine_x)/dem.cellsize.^2; % divide by number of inflow cells and by cellsize^2
rain.Z(inflow_rhine_y,inflow_rhine_x(1)) = ones(length(inflow_rhine_x),1)*inflow_rhine;
inflow_aare = 349*inflow_factor; % (m^3/s)
% inflow_aare_x = [1461:1462]; % y-location (column) of inlet
% inflow_aare_y = ones(2,1)'*998; % x-location (row) of inlet
inflow_aare_x = [731]; % y-location (column) of inlet
inflow_aare_y = ones(length(inflow_aare_x),1)'*498; % x-location (row) of inlet
inflow_aare = inflow_aare/length(inflow_aare_x)/dem.cellsize.^2; % divide by number of inflow cells and by cellsize^2
rain.Z(inflow_aare_y,inflow_aare_x(1)) = ones(length(inflow_aare_x),1)*inflow_aare;
inflow_reuss = 140*inflow_factor; % (m^3/s)
% inflow_reuss_x = [1680:1682]; % y-location (column) of inlet
% inflow_reuss_y = ones(3,1)'*998; % x-location (row) of inlet
inflow_reuss_x = [842]; % y-location (column) of inlet
inflow_reuss_y = ones(length(inflow_reuss_x),1)'*498; % x-location (row) of inlet
inflow_reuss = inflow_reuss/length(inflow_reuss_x)/dem.cellsize.^2; % divide by number of inflow cells and by cellsize^2
rain.Z(inflow_reuss_y,inflow_reuss_x(1)) = ones(length(inflow_reuss_x),1)*inflow_reuss;
inflow_limmat = 114*inflow_factor; % (m^3/s)
% inflow_limmat_x = [1851:1852]; % y-location (column) of inlet
% inflow_limmat_y = ones(2,1)'*998; % x-location (row) of inlet
inflow_limmat_x = [926]; % y-location (column) of inlet
inflow_limmat_y = ones(length(inflow_limmat_x),1)'*498; % x-location (row) of inlet
inflow_limmat = inflow_limmat/length(inflow_limmat_x)/dem.cellsize.^2; % divide by number of inflow cells and by cellsize^2
rain.Z(inflow_limmat_y,inflow_limmat_x(1)) = ones(length(inflow_limmat_x),1)*inflow_limmat;
% rain = resample(rain,dem60);
rain.Z(1:end,1)=-1;
% rain.Z(1,1:end)=-1;
% rain.Z(end,1:end)=-1;
% rivers = GRIDobj('.\Topo\rivers2raster.tif');
% INITIAL SEDIMENT CONCENTRATION
cs = rain;
cs.Z=cs.Z*0;
cs.Z(1,:) = 1;
cs.Z(:,end) = 1;
cs.Z(end,:) = 1;
climate = 'Topo\\boundary_1Ma_GT.climate';
% WATER
% water = GRIDobj('.\Topo\HochRhein_WATER+LAKE_1000m.tif');
% UPLIFT
% uplift = GRIDobj('.\Topo\uplift_m_per_s_baselevel_Basel.tif');
uplift = GRIDobj('.\Topo\uplift_elicited_updated.tif');%-5.63e-5; % [m/yr] minus the uplift at the outlet to make it the baselevel
uplift = resample(uplift,dem);
uplift.Z(1,:) = uplift.Z(2,:);
uplift.Z(:,1) = uplift.Z(:,2);
% SED (sediment thickness in meters)
sed = GRIDobj('.\Topo\mqu_140715g_utm32n_aug.tif');
sed = resample(sed,dem);
sed.Z(isnan(sed.Z))=0;
LEM.dem = dem;
LEM.rain = rain;
LEM.sed = sed;
LEM.uplift = uplift;
% LEM.water = water;
LEM.cs = cs;
LEM.climate = climate;
GRIDobj2grd(dem,['./Topo/',dem.name,'.alt']);
GRIDobj2grd(rain,['./Topo/',dem.name,'.rain']);
GRIDobj2grd(sed,['./Topo/',dem.name,'.sed']);
GRIDobj2grd(uplift,['./Topo/',dem.name,'.uplift']);
% GRIDobj2grd(water,['./Topo/',dem.name,'.water']);
GRIDobj2grd(cs,['./Topo/',dem.name,'.cs']);
%--------------------------------------------------------------------------
%% DEFINE INPUT PARAMETERS
%--------------------------------------------------------------------------
LEM.experiment = 'hochrhein'; % Project name
LEM.ErosPath = 'D:\\USER\\mey'; % Path to .exe
LEM.outfolder = 'hochrhein\\60m\\newBC'; % folder to store results in
LEM.eros_version = 'eros7.5.107';
% LEM.inflow = 1060; % [m3s-1]water inflow at source cells
LEM.rainfall = 1; % Sets the precipitation rate per unit surface when multiplied by the rainfall map
LEM.initial_sediment_stock = '0.01'; % % The total "stock" of sediment at the precipiton landing is: input_sediment_concentration*cs_map[i]*Precipiton_volume
LEM.inertia = 0; % refers to inertia term in shallow water equation
LEM.time_unit = 'year';
LEM.begin = 0; LEM.begin_option = 'time'; % start time
LEM.end = 1e+6; LEM.end_option = 'time'; % length of model run
LEM.draw = 1e+3; LEM.draw_option = 'time'; % output interval
LEM.step = 0.05e2; LEM.step_option = 'volume';
LEM.stepmin = 0.1e1;
LEM.stepmax = 1e4;
LEM.initbegin = 1e+1; % initialization time (-)
LEM.initend = 1e+1;
LEM.initstep = 2;
LEM.TU_coefficient = 0.001; % sets the proportion of rain pixels that make up 1 TU
LEM.flow_model = 'stationary:pow';
LEM.erosion_multiply = 10000; % multiplying factor for erosion rates. Equivalent to consider an "erosion time" larger than the hydrodynamic time
LEM.uplift_multiplier = 1;
LEM.time_extension = '10e+3:dir';
LEM.limiter = 1e-1;
%--------------------------------------------------------------------------
% EROSION/DEPOSITION
%--------------------------------------------------------------------------
LEM.erosion_model = 'MPM'; % (stream_power, shear_stress, shear_mpm)
LEM.deposition_model = 'constant'; % need to know whether there are other options!
LEM.stress_model = 'rgqs';
% ALLUVIAL
LEM.fluvial_stress_exponent = 1.5; % exponent in sediment flux eq. (MPM): qs = E(tau-tau_c)^a
LEM.fluvial_erodability = 2.6e-8; % [kg-1.5 m-3.5 s-2] E in MPM equation
LEM.fluvial_sediment_threshold = 0.05; % [Pa] critical shear stress (tau_c) in MPM equation
LEM.deposition_length = 60; % [m] xi in vertical erosion term: edot = qs/xi
% LATERAL EROSION/DEPOSITION
LEM.fluvial_lateral_erosion_coefficient = '1e-1:dir'; % dimensionless coefficient (Eq. 17 in Davy, Croissant, Lague (2017))
LEM.fluvial_lateral_deposition_coefficient = 0.5;
LEM.lateral_erosion_model = 1;
LEM.lateral_deposition_model = 'constant';
% BEDROCK
LEM.fluvial_basement_erodability = 0.1;
LEM.fluvial_basement_threshold = 0.5;
LEM.outbend_erosion_coefficient = 1.000000;
LEM.inbend_erosion_coefficient = 1.00000;
LEM.poisson_coefficient = 5;
LEM.diffusion_coefficient = 4;
LEM.sediment_grain = 0.0025;
LEM.basement_grain = 0.025;
% LEM.survey_points = '171130';
%--------------------------------------------------------------------------
% FLOW MODEL
%--------------------------------------------------------------------------
LEM.friction_model = 'manning';
LEM.friction_coefficient = 0.025; %
LEM.flow_boundary = 'free';
%--------------------------------------------------------------------------
% OUTPUTS TO WRITE
%--------------------------------------------------------------------------
LEM.stress = 1;
LEM.waters = 1;
LEM.discharge = 1;
LEM.downward = 0;
LEM.slope = 1;
LEM.qs = 1;
LEM.capacity = 1;
LEM.sediment = 1;
LEM.flux =1;
LEM.stock =1;
LEM.str_write = '';
LEM.str_nowrite = '';
writeErosInputs(LEM);
%% run model
system([LEM.experiment,'.bat'])