Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
%--------------------------------------------------------------------------
% PREPARE GRIDS
%--------------------------------------------------------------------------
%
% addpath('.\mfiles')
% ALT (elevation model)
clear
dem=GRIDobj('./Topo/Alps_basin_3.tif');
% RAIN (sources (>0) and sinks (-1))
rain = GRIDobj('.\Topo\Alps_basin_3_rain.tif'); % MAP after WorldClim2 (mm/yr)
% rain = resample(rain,dem);
% rain = rain/1000; % convert to m/yr
% rain = rain/3600/24/365.25/dem.cellsize.^2; % convert to m/s
% rain.Z(1:end,1)=-1;
% rain.Z(1,1:end)=-1;
% rain.Z(end,1:end)=-1;
% rain.Z(1:end,end)=-1;
% WATER
water = GRIDobj('.\Topo\Alps_basin_3_water.tif');
% UPLIFT
% uplift = GRIDobj('.\Topo\uplift_m_per_s_baselevel_Basel.tif');
uplift = GRIDobj('.\Topo\uplift_m_per_s_nagra_baselevel_Basel.tif');
uplift = resample(uplift,dem);
% SED (sediment thickness in meters)
sed = GRIDobj('.\Topo\mqu_140715g_utm32n.tif');
sed = resample(sed,dem);
sed.Z(isnan(sed.Z))=0;
LEM.dem = dem;
LEM.rain = rain;
% LEM.sed = sed;
% LEM.uplift = uplift;
LEM.water = water;
GRIDobj2grd(dem,['./Topo/',dem.name,'.alt']);
GRIDobj2grd(rain,['./Topo/',dem.name,'.rain']);
% GRIDobj2grd(sed,['./Topo/',dem.name,'.sed']);
% GRIDobj2grd(uplift,['./Topo/',dem.name,'.uplift']);
GRIDobj2grd(water,['./Topo/',dem.name,'.water']);
%--------------------------------------------------------------------------
%% DEFINE INPUT PARAMETERS
%--------------------------------------------------------------------------
LEM.experiment = 'hillslope_test2'; % Project name
LEM.ErosPath = 'D:\\USER\\mey'; % Path to .exe
LEM.outfolder = 'hillslope_test\\rgqs'; % folder to store results in
% LEM.inflow = 1060; % [m3s-1]water inflow at source cells
LEM.rainfall = 2.8e-5*2; % Sets the precipitation rate per unit surface when multiplied by the rainfall map
LEM.initial_sediment_stock = '0:dir'; % % The total "stock" of sediment at the precipiton landing is: input_sediment_concentration*cs_map[i]*Precipiton_volume
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
LEM.inertia = 0; % refers to inertia term in shallow water equation
LEM.begin = 0; LEM.begin_option = 'time'; % start time
LEM.end = 9e+5; LEM.end_option = 'time'; % length of model run
LEM.draw = 3000; LEM.draw_option = 'time'; % output interval
LEM.step = 100; LEM.step_option = 'volume';
LEM.stepmin = 1e1;
LEM.stepmax = 1e4;
LEM.initbegin = 1e+1; % initialization time (-)
LEM.initend = 1e+1;
LEM.initstep = 2;
LEM.TU_coefficient = '1:dir'; % sets the proportion of rain pixels that make up 1 TU
LEM.flow_model = 'stationary:pow';
LEM.erosion_multiply = 100; % multiplying factor for erosion rates. Equivalent to consider an "erosion time" larger than the hydrodynamic time
LEM.uplift_multiplier = 1/3600/24/365.25/1000*700000;
LEM.limiter = 1e-1;
LEM.continue_run = -1;
%--------------------------------------------------------------------------
% EROSION/DEPOSITION
%--------------------------------------------------------------------------
LEM.erosion_model = 'MPM'; % (stream_power, shear_stress, shear_mpm)
LEM.deposition_model = 'constant'; % need to know whether there are other options!
LEM.eros_version = 'eros7.3.112';
LEM.stress_model = 'rgqs';
% ALLUVIAL
LEM.fluvial_stress_exponent = 1.5; % exponent in sediment flux eq. (MPM): qs = E(tau-tau_c)^a
LEM.fluvial_erodability = 2.6e-8; % [kg-1.5 m-3.5 s-2] E in MPM equation
LEM.fluvial_sediment_threshold = 0.05; % [Pa] critical shear stress (tau_c) in MPM equation
LEM.deposition_length = 30; % [m] xi in vertical erosion term: edot = qs/xi
% LATERAL EROSION/DEPOSITION
LEM.fluvial_lateral_erosion_coefficient = 1e-4; % dimensionless coefficient (Eq. 17 in Davy, Croissant, Lague (2017))
LEM.fluvial_lateral_deposition_coefficient = 0.5;
LEM.lateral_erosion_model = 1;
LEM.lateral_deposition_model = 'constant';
% BEDROCK
LEM.fluvial_basement_erodability = 0.1;
LEM.fluvial_basement_threshold = 0.5;
LEM.outbend_erosion_coefficient = 1.000000;
LEM.inbend_erosion_coefficient = 1.00000;
LEM.poisson_coefficient = 5;
LEM.diffusion_coefficient = 4;
LEM.sediment_grain = 0.0025;
LEM.basement_grain = 0.025;
%--------------------------------------------------------------------------
% FLOW MODEL
%--------------------------------------------------------------------------
LEM.friction_model = 'manning';
LEM.friction_coefficient = 0.025; %
LEM.flow_boundary = '2';
%--------------------------------------------------------------------------
% OUTPUTS TO WRITE
%--------------------------------------------------------------------------
LEM.stress = 1;
LEM.waters = 1;
LEM.discharge = 1;
LEM.downward = 0;
LEM.slope = 1;
LEM.qs = 1;
LEM.capacity = 1;
LEM.sediment = 1;
LEM.flux =1;
LEM.stock =1;
LEM.str_write = '';
LEM.str_nowrite = '';
writeErosInputs(LEM);
%% run model
system([LEM.experiment,'.bat'])