Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
function [B,varargout] = erosanimation(variable,varargin)
% Visualize output of the EROS landscape evolution model (LEM)
%
%
% The following function library is required, which can be downloaded
% from e.g. the MATLAB file exchange:
%
% TopoToolbox - A MATLAB program for the analysis of digital elevation
% models. (https://github.com/wschwanghart/topotoolbox)
%
%
% SYNTAX
%
% B = erosanimation(variable)
% B = erosanimation(variable,pn,pv,...)
%
%
% DESCRIPTION
%
% erosanimation shows timeseries data either as grid average or as 2d/3d movie
%
%
% INPUT (required)
%
% variable variable of interest (string)
% 'elevation' Topographic elevation
% 'sediment' Sediment thickness
% 'water' Water depth
% 'discharge' Water discharge
% 'qs' Unit-sediment flux
% 'downward' Flow orientation
% 'stress' Shear stress
% 'slope' Stream slope
% 'capacity' Stream capacity
% 'stock' Sediment stock
% 'hum' Water discharge on the topography
% 'rain' Sources (>0) and sinks (-1) of water and sediment
%
% INPUT (optional)
%
% Parameter name/value pairs (pn,pv,...)
%
% 'mode' visualization mode (string) (default: 'movie2')
% 'average' shows the evolution of the spatial average
% of the variable defined as required input
% 'movie2' 2d movie of variable
% 'movie3' 3d movie of topographic evolution
%
% 'viewdir' view geometry specified as 2-element vector of azimuth
% and elevation (default: [45,45])
% only apllies to mode 'movie3'
%
%
%
% OUTPUT
%
% B movie frames captured with modes 'movie2' and 'movie3'
% B (mode='average') 3d array of the variable of interest.
%
%
% OUTPUT (optional)
%
% meanB spatial average of variable through time
%
% EXAMPLE
%
% Run the example that comes with the Eros download and:
%
% 1. make an 2d-animation of sediment thickness and use the returned
% frames to construct an animated .gif
%
% eros_template.m
% B = erosanimation('sediment');
% frames2gif(B,'sediment.gif',0.1)
%
% 2. plot the average sediment thickness versus time
%
% B = erosanimation('sediment','mode','average');
%
% 3. make an 3d-animation of topography and return frames
%
% B = erosanmimation('topo','mode','movie3');
%
% REFERENCES:
%
% Davy, P., & Lague, D. (2009). Fluvial erosion/transport equation of land-
% scape evolution models revisited. Journal of Geophysical Research, 114,
% 116. https://doi.org/10.1029/2008JF001146.
%
% Davy, P., Croissant, T., & Lague, D. (2017). A precipiton method to cal-
% culate river hydrodynamics, with applications to flood prediction, land-
% scape evolution models, and braiding instabilities. Journal of
% Geophysical Research: Earth Surface, 122, 14911512.
% https://doi.org/10.1002/2016JF004156
%
%
% Author: Juergen Mey (juemey[at]uni-potsdam.de)
% Date: 28. May, 2020
p = inputParser;
expectedInput_variable = {'topo','water','sediment','qs',...
'discharge','downward','stress','hum','slope','capacity','stock'};
addRequired(p,'variable',@(x) any(validatestring(x,expectedInput_variable)));
default_mode = 'movie2';
expectedInput_mode = {'average','movie2','movie3'};
addParameter(p,'mode',default_mode,@(x) any(validatestring(x,expectedInput_mode)));
default_viewdir = [45,45];
addParameter(p,'viewdir',default_viewdir,@isnumeric);
parse(p,variable,varargin{:});
mode = p.Results.mode;
viewdir = p.Results.viewdir;
switch variable
case 'topo'
filetype = 'alt';
iylabel = 'Elevation (m)';
colors = 'landcolor';
case 'sediment'
filetype = 'sed';
iylabel = 'Sediment thickness (m)';
colors = 'jet';
case 'water'
filetype = 'water';
iylabel = 'Water depth (m)';
colors = 'flowcolor';
case 'capacity'
filetype = 'capacity';
iylabel = 'Capacity';
colors = 'jet';
case 'discharge'
filetype = 'discharge';
iylabel = 'Water discharge (m^3/s)';
colors = 'flowcolor';
case 'downward'
filetype = 'downward';
iylabel = 'Mean settling velocity (m/s)';
colors = 'parula';
case 'hum'
filetype = 'hum';
iylabel = 'Water discharge on topography (m^3/s)';
colors = 'flowcolor';
case 'qs'
filetype = 'qs';
iylabel = 'Sediment flux (m^3/s)';
colors = 'jet';
case 'slope'
filetype = 'slope';
iylabel = 'Slope';
colors = 'parula';
case 'stock'
filetype = 'stock';
iylabel = 'Sediment stock (m^3)';
colors = 'jet';
case 'stress'
filetype = 'stress';
iylabel = 'Shear stress (Pa)';
colors = 'jet';
end
% determine timesteps
T = dir('*.ini');
Z = dir(['*.',filetype]);
[t,~] = fread_timeVec(T.name,length(Z));
if isempty(t)
t=1:length(Z);
end
[~,index] = sortrows({Z.date}.');
Z = Z(index);
for i = 1:length(Z)
[z,~] = fopengrd(Z(i).name);
B(:,:,i) = z;
meanB(i)=mean(z(:));
end
switch mode
case 'average'
plot(t,meanB)
ylabel(iylabel);
xlabel('time');
grid on
B=meanB;
case 'movie2'
H = dir('*.alt');
Z = dir(['*.',filetype]);
[~,index] = sortrows({H.date}.');
H = H(index);
Z = Z(index);
w = waitbar(1/length(H),['Collecting movie frames ... ']);
for i = 1:length(H)-1
h = grd2GRIDobj(H(i+1).name);
z = grd2GRIDobj(Z(i+1).name);
z.Z(z.Z==0)=NaN;
imageschs(h,z,'colormap',colors);
c = colorbar;
c.Label.String = iylabel;
caxis([nanmin(B(:)),nanmax(B(:))])
title(['Time = ',num2str(t(i)),''])
set(gcf,'Visible','off')
F(i) = getframe(gcf);
close all
waitbar(i/length(H))
end
close(w)
f = figure;
movie(f,F,2,5)
close(f)
B = F;
case 'movie3'
H = dir('*.alt');
% Z = dir(['*.',filetype]);
[~,index] = sortrows({H.date}.');
H = H(index);
% Z = Z(index);
w = waitbar(1/length(H),['Collecting movie frames ... ']);
for i = 1:length(H)
h = grd2GRIDobj(H(i).name);
% z = grd2GRIDobj(Z(i).name);
[xm,ym] = getcoordinates(h);
axis off
surface(xm,ym,h.Z,'EdgeColor','none');colorbar
view(viewdir(1),viewdir(2))
axis equal
c = colorbar;
c.Label.String = 'Elevation (m)';
colormap(landcolor)
% caxis([nanmin(B(:)),nanmax(B(:))])
title(['Time = ',num2str(t(i)),''])
set(gcf,'Visible','off')
F(i) = getframe(gcf);
close all
waitbar(i/length(H))
end
close(w)
f = figure;
movie(f,F,2,5)
close(f)
B = F;
end