Newer
Older
function [F] = erosanimation(variable,varargin)
% Visualize output of the EROS landscape evolution model as animations (LEM)
%
%
% The following function library is required, which can be downloaded
% from e.g. the MATLAB file exchange:
%
% TopoToolbox - A MATLAB program for the analysis of digital elevation
% models. (https://github.com/wschwanghart/topotoolbox)
%
%
% SYNTAX
%
% B = erosanimation(variable)
% B = erosanimation(variable,pn,pv,...)
%
%
% DESCRIPTION
%
% erosanimation creates movie frames of landscape evolution either in
% profile view, map view or in 3d.
%
%
% INPUT (required)
%
% variable variable of interest (string)
% 'sediment' Sediment thickness
% 'water' Water depth
% 'discharge' Water discharge
% 'qs' Unit-sediment flux
% 'downward' Flow orientation
% 'stress' Shear stress
% 'slope' Stream slope
% 'capacity' Stream capacity
% 'stock' Sediment stock
% 'hum' Water discharge on the topography
% 'rain' Sources (>0) and sinks (-1) of water and sediment
%
% 'profile' custom profile, second argument needs to be a DEM (GRIDobj)
% 'sprofile' stream long profile, second argument needs to be a DEM (GRIDobj)
%
% INPUT (optional)
%
% Parameter name/value pairs (pn,pv,...)
%
% 'mode' visualization mode (string) (default: 'movie2')
% 'movie2' 2d movie of variable
% 'movie3' 3d movie of topographic evolution
%
% 'viewdir' view geometry specified as 2-element vector of azimuth
% and elevation (default: [45,45])
% only apllies to mode 'movie3'
%
%
%
% OUTPUT
%
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
%
% EXAMPLE
%
% Run the example that comes with the Eros download and:
%
% 1. make an 2d-animation of sediment thickness and use the returned
% frames to construct an animated .gif
%
% eros_template.m
% B = erosanimation('sediment');
% frames2gif(B,'sediment.gif',0.1)
%
% 2. plot the average sediment thickness versus time
%
% B = erosanimation('sediment','mode','average');
%
% 3. make an 3d-animation of topography and return frames
%
% B = erosanmimation('topo','mode','movie3');
%
% REFERENCES:
%
% Davy, P., & Lague, D. (2009). Fluvial erosion/transport equation of land-
% scape evolution models revisited. Journal of Geophysical Research, 114,
% 116. https://doi.org/10.1029/2008JF001146.
%
% Davy, P., Croissant, T., & Lague, D. (2017). A precipiton method to cal-
% culate river hydrodynamics, with applications to flood prediction, land-
% scape evolution models, and braiding instabilities. Journal of
% Geophysical Research: Earth Surface, 122, 14911512.
% https://doi.org/10.1002/2016JF004156
%
%
% Author: Juergen Mey (juemey[at]uni-potsdam.de)
% Date: 28. May, 2020
p = inputParser;
expectedInput_variable = {'topo','water','sediment','flux','qs',...
'discharge','downward','stress','hum','slope','capacity','stock','sprofile','profile'};
addRequired(p,'variable',@(x) any(validatestring(x,expectedInput_variable)));
if strcmp(variable,'sprofile') || strcmp(variable,'profile')
addRequired(p,'dem',@(x)isa(x,'GRIDobj'));
default_flowmin = 100;
addParameter(p,'flowmin',default_flowmin,@isnumeric);
parse(p,variable,varargin{:});
dem = p.Results.dem;
flowmin = p.Results.flowmin;
else
default_mode = 'movie2';
expectedInput_mode = {'movie2','movie3'};
addParameter(p,'mode',default_mode,@(x) any(validatestring(x,expectedInput_mode)));
default_viewdir = [45,45];
addParameter(p,'viewdir',default_viewdir,@isnumeric);
parse(p,variable,varargin{:});
mode = p.Results.mode;
viewdir = p.Results.viewdir;
end
switch variable
case 'topo'
filetype = 'alt';
iylabel = 'Elevation (m)';
colors = 'landcolor';
case 'sediment'
filetype = 'sed';
iylabel = 'Sediment thickness (m)';
colors = 'jet';
case 'water'
filetype = 'water';
iylabel = 'Water depth (m)';
colors = 'flowcolor';
case 'capacity'
filetype = 'capacity';
iylabel = 'Capacity';
colors = 'jet';
case 'discharge'
filetype = 'discharge';
iylabel = 'Water discharge (m^3/s)';
colors = 'flowcolor';
case 'flux'
filetype = 'flux';
iylabel = 'Water discharge (m^3/s)';
colors = 'flowcolor';
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
case 'downward'
filetype = 'downward';
iylabel = 'Mean settling velocity (m/s)';
colors = 'parula';
case 'hum'
filetype = 'hum';
iylabel = 'Water discharge on topography (m^3/s)';
colors = 'flowcolor';
case 'qs'
filetype = 'qs';
iylabel = 'Sediment flux (m^3/s)';
colors = 'jet';
case 'slope'
filetype = 'slope';
iylabel = 'Slope';
colors = 'parula';
case 'stock'
filetype = 'stock';
iylabel = 'Sediment stock (m^3)';
colors = 'jet';
case 'stress'
filetype = 'stress';
iylabel = 'Shear stress (Pa)';
colors = 'jet';
end
if strcmp(variable,'sprofile')
FD = FLOWobj(dem,'preprocess','c');
S = STREAMobj(FD,flowacc(FD)>flowmin);
S2 = modify(S,'interactive','reachselect');
marker = round(linspace(1,length(S2.distance),10));
H = dir('*.alt');
W = dir('*.water');
S = dir('*.sed');
D = dir('*.flux');
[~,index] = sortrows({H.datenum}.');
H = H(index);
W = W(index);
D = D(index);
try % in case there is no sediment involved
S = S(index);
sed = grd2GRIDobj(S(1).name,dem);
catch
sed = dem;
sed.Z = zeros(dem.size);
end
for i = 1:length(D)
[z,~] = fopengrd(D(i).name);
z(z==0)=NaN;
B(:,:,i) = z;
end
w = waitbar(1/length(H),['Collecting movie frames ... ']);
for i=1:length(H)
h=figure;
subplot(2,1,1)
water2 = grd2GRIDobj(W(i).name,dem);
dem2 = grd2GRIDobj(H(i).name,dem);
try % in case there is no sediment involved
sed2 = grd2GRIDobj(S(i).name,dem);
catch
sed2 = sed;
end
plotdz(S2,dem,'color',[0.9 0.9 0.9]);hold on % initial river profile
plotdz(S2,dem-sed,'color',[0.7 0.7 0.7]) % initial bedrock profile
plotdz(S2,dem2+water2,'color',[0 0.61 1]) % water surface
plotdz(S2,dem2,'color',[1 0.5 0.1]);hold on % updated river profile
plotdz(S2,dem2-sed2,'color','k') % updated bedrock profile
xlim([0 S2.distance(end)])
yl(i,1:2) = ylim;
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
title(['Time = ',num2str(i),''])
xlabel('Distance (m)')
ylabel('Elevation (m)');
legend({'Initial topo','Initial bedrock','Water','Sediment','Bedrock'},'Location','northwest')
legend('boxoff')
subplot(2,1,2)
flux = grd2GRIDobj(D(i).name,dem);
flux.Z(flux.Z==0)=NaN;
imageschs(dem2,flux,'colormap','flowcolor','caxis',[nanmin(B(:)),nanmax(B(:))],'colorbarylabel','Water discharge (m^3/s)');
hold on;
plot(S2,'k--')
% scatter(S2.x(marker),S2.y(marker),'k')
text(S2.x(marker),S2.y(marker),num2str(round(S2.distance(marker)/1000)),'FontWeight','bold')
x0=10;
y0=10;
width=2200;
height=1900/2;
set(gcf,'position',[x0,y0,width,height])
set(gcf,'Visible','off')
F(i) = getframe(gcf);
close all
waitbar(i/length(H))
end
close(w)
elseif strcmp(variable,'profile')
H = dir('*.alt');
W = dir('*.water');
S = dir('*.sed');
D = dir('*.flux');
[~,index] = sortrows({H.date}.');
H = H(index);
W = W(index);
D = D(index);
try % in case there is no sediment involved
S = S(index);
sed = grd2GRIDobj(S(1).name,dem);
catch
sed = dem;
sed.Z = zeros(dem.size);
end
for i = 1:length(D)
[z,~] = fopengrd(D(i).name);
z(z==0)=NaN;
B(:,:,i) = z;
end
[d,z,x,y] = demprofile(dem);
[~,sz0] = demprofile(sed,[],x,y);
w = waitbar(1/length(H),['Collecting movie frames ... ']);
for i=1:length(H)
h=figure;
subplot(2,1,1)
water2 = grd2GRIDobj(W(i).name,dem);
dem2 = grd2GRIDobj(H(i).name,dem);
try % in case there is no sediment involved
sed2 = grd2GRIDobj(S(i).name,dem);
catch
sed2 = sed;
end
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
[~,hz] = demprofile(dem2,[],x,y);
[~,wz] = demprofile(water2,[],x,y);
[~,sz] = demprofile(sed2,[],x,y);
plot(d,z,'color',[0.9 0.9 0.9]);hold on
plot(d,z-sz0,'color',[0.7 0.7 0.7])
plot(d,hz+wz,'color',[0 0.61 1])
plot(d,hz,'color',[1 0.5 0.1]);hold on
plot(d,hz-sz,'color','k')
xlim([0 d(end)])
yl(i,1:2) = ylim;
ylim([yl(1,1),yl(1,2)+20]);
title(['Time = ',num2str(i),''])
xlabel('Distance (m)')
ylabel('Elevation (m)');
subplot(2,1,2)
flux = grd2GRIDobj(D(i).name,dem);
flux.Z(flux.Z==0)=NaN;
imageschs(dem2,flux,'colormap','flowcolor','caxis',[nanmin(B(:)),nanmax(B(:))],'colorbarylabel','Water discharge (m^3/s)');
hold on;
plot(x,y,'k--')
text(x(1)+10,y(1)+10,'left');
text(x(end)+10,y(end)+10,'right');
x0=10;
y0=10;
width=2200;
height=1900/2;
set(gcf,'position',[x0,y0,width,height])
set(gcf,'Visible','off')
F(i) = getframe(gcf);
close all
waitbar(i/length(H))
end
close(w)
else
% [t,~] = fread_timeVec(T.name,length(Z));
% if isempty(t)
% t=1:length(Z);
% end
% if isnan(t)
[~,index] = sortrows({Z.date}.');
Z = Z(index);
for i = 1:length(Z)
[z,~] = fopengrd(Z(i).name);
z(z==0)=NaN;
B(:,:,i) = z;
end
switch mode
case 'movie2'
H = dir('*.alt');
Z = dir(['*.',filetype]);
[~,index] = sortrows({H.date}.');
H = H(index);
Z = Z(index);
w = waitbar(1/length(H),['Collecting movie frames ... ']);
for i = 1:length(H)-1
h = grd2GRIDobj(H(i+1).name);
z = grd2GRIDobj(Z(i+1).name);
z.Z(z.Z==0)=NaN;
% imageschs(h,z,'colormap',colors,'caxis',[0,1000],'colorbarylabel',iylabel);
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
imageschs(h,z,'colormap',colors,'caxis',[nanmin(B(:)),nanmax(B(:))],'colorbarylabel',iylabel);
%set(gca,'ColorScale','log')
title(['Time = ',num2str(t(i)),''])
x0=10;
y0=10;
width=2200;
height=1900;
set(gcf,'position',[x0,y0,width,height])
set(gcf,'Visible','off')
F(i) = getframe(gcf);
close all
waitbar(i/length(H))
end
close(w)
case 'movie3'
H = dir('*.alt');
[~,index] = sortrows({H.date}.');
H = H(index);
w = waitbar(1/length(H),['Collecting movie frames ... ']);
for i = 1:length(H)
h = grd2GRIDobj(H(i).name);
[xm,ym] = getcoordinates(h);
axis off
surface(xm,ym,h.Z,'EdgeColor','none');colorbar
view(viewdir(1),viewdir(2))
axis equal
c = colorbar;
c.Label.String = 'Elevation (m)';
colormap(landcolor)
caxis([nanmin(B(:)),nanmax(B(:))])
title(['Time = ',num2str(t(i)),''])
x0=10;
y0=10;
width=2200;
height=1900;
set(gcf,'position',[x0,y0,width,height])
set(gcf,'Visible','off')
F(i) = getframe(gcf);
close all
waitbar(i/length(H))
end
close(w)
end