Newer
Older
{
"cells": [
{
"cell_type": "code",
"from scipy.stats import pearsonr\n",
"import numpy as np\n",
"from src.main import setup_dataframes, Plotter, replace_cryptic_names, Categories, Statistics\n",
"from kPOD import k_pod\n",
"from sklearn.manifold import MDS\n",
"import matplotlib.pyplot as plt\n",
"interview, variables, values, product_categories, rankings = setup_dataframes()\n",
}
},
{
"cell_type": "code",
"df_filtered = interview.get_filtered(product_categories)\n",
"plotter = Plotter(df_filtered, product_categories)\n",
"plotter.plot_groups(variables.get_groups())\n",
"statistics = Statistics(df_filtered, product_categories)"
}
},
{
"cell_type": "code",
}
},
{
"cell_type": "code",
"plotter.plot_faculty()"
"source": [
"plotter.plot_item(Categories.Games, 'all')\n",
"plotter.plot_item(Categories.LMS, 'all')"
],
"metadata": {
"plotter.plot_item(Categories.VR, 'top')"
}
},
{
"cell_type": "code",
"plotter.plot_item(Categories.VR, 'mid')"
}
},
{
"cell_type": "code",
"plotter.plot_item(Categories.VR, 'low')"
}
},
{
"cell_type": "markdown",
"source": [
"## Boxplot for chosen scales in all 4 categories\n",
"Choosing scales by n largest means greater equal 5\n",
"Boxplot with quantile whiskers, mean and SD. No median or beveled boxes."
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"for c in Categories:\n",
},
{
"cell_type": "markdown",
"source": [
"## Showing Scales with drastic differences\n",
"Sorting all Scales by mean for each category.\n",
"Showing \"drastic difference\" by a step size from one mean to the next bigger one, when it exceeds threshold p."
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"outputs": [],
"source": [],
"metadata": {
}
},
{
"cell_type": "markdown",
"source": [
"## Correlation of categories\n",
"Correlating means of scales of each category. Significance (p<= 0.05) is displayed with *"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"source": [
"statistics = Statistics(df_filtered, product_categories)\n",
"statistics.calc_corr()"
],
}
},
{
"cell_type": "markdown",
"source": [
"## Comparing replication results\n",
"Sum up all LMS and game scales of original UEQ+ and our study. Show results in a table.\n",
"(doesn't need to be programmed I guess)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"source": [
"paper_LMS = ['Inhaltsqualität', 'Nützlichkeit', 'Durchschaubarkeit', 'Übersichtlichkeit', 'Effizienz',\n",
" 'Intuitive Bedienung', 'Vertrauen', 'Steuerbarkeit', 'Stimulation', 'Anpassbarkeit', 'Wertigkeit', 'visuelle Ästhetik', 'Immersion',\n",
" 'Originalität', 'Identität', 'Verbundenheit']\n",
"handbook_LMS = ['Inhaltsqualität', 'Vertrauenswürdigkeit', 'Nützlichkeit', 'Übersichtlichkeit', 'Durchschaubarkeit', 'Effizienz', 'Vertrauen', 'Steuerbarkeit']\n",
"latest_paper_LMS = ['Inhaltsqualität', 'Nützlichkeit', 'Übersichtlichkeit', 'Durchschaubarkeit', 'Effizienz', 'Steuerbarkeit', 'Intuitive Bedienung',\n",
" 'Vertrauen', 'Wertigkeit', 'Stimulation', 'Anpassbarkeit', 'visuelle Ästhetik', 'Originalität']\n",
"new_LMS = ['Inhaltsqualität', 'Inhaltsseriosität', 'Vertrauen', 'Effizienz', 'Nützlichkeit', 'Durchschaubarkeit', 'Steuerbarkeit', 'Übersichtlichkeit',\n",
" 'Intuitive Bedienung', 'Anpassbarkeit', 'Wertigkeit', 'Attraktivität', 'visuelle Ästhetik', 'Stimulation', 'Akustik', 'Identität',\n",
" 'Verbundenheit', 'Originalität', 'Haptik', 'Immersion']\n",
"paper_games = ['Immersion', 'Stimulation', 'visuelle Ästhetik', 'Originalität', 'Steuerbarkeit', 'Durchschaubarkeit', 'Intuitive Bedienung',\n",
" 'Verbundenheit', 'Übersichtlichkeit', 'Effizienz', 'Wertigkeit', 'Anpassbarkeit', 'Vertrauen', 'Identität','Inhaltsqualität', 'Nützlichkeit']\n",
"handbook_games = ['Immersion', 'Stimulation', 'Originalität', 'Intuitive Bedienung']\n",
"latest_paper_games = ['Stimulation', 'Originalität', 'visuelle Ästhetik', 'Steuerbarkeit', 'Durchschaubarkeit', 'Intuitive Bedienung',\n",
" 'Originalität', 'Effizienz', 'Wertigkeit', 'Vertrauen', 'Anpassbarkeit', 'Inhaltsqualität', 'Nützlichkeit']\n",
"new_games = ['Stimulation', 'Immersion', 'Vertrauen', 'Steuerbarkeit', 'Durchschaubarkeit', 'Attraktivität', 'Intuitive Bedienung', 'Originalität',\n",
" 'visuelle Ästhetik', 'Effizienz', 'Übersichtlichkeit', 'Wertigkeit', 'Anpassbarkeit', 'Inhaltsseriosität', 'Akustik', 'Inhaltsqualität',\n",
" 'Verbundenheit', 'Haptik', 'Identität', 'Nützlichkeit']\n",
"\n",
"all_rankings = {'LMS from paper': paper_LMS,\n",
" 'LMS from handbook': handbook_LMS,\n",
" 'LMS from latest paper': latest_paper_LMS,\n",
" 'LMS from our study': new_LMS,\n",
" 'games from paper': paper_games,\n",
" 'games from handbook': handbook_games,\n",
" 'games from latest paper': latest_paper_games,\n",
" 'games from our study': new_games}\n",
"print(statistics.similarity_by_ranked_scales(all_rankings))"
],
"metadata": {
{
"cell_type": "code",
"source": [
"df_groups = statistics.kpod_clustering(all_rankings)\n",
"\n",
"N = 40\n",
"x, y, c = np.random.rand(3, N)\n",
"s = np.random.randint(10, 220, size=N)\n",
"m = np.repeat(df_groups, N/4)\n",
"\n",
"fig, ax = plt.subplots()\n",
"\n",
"scatter = plotter.m_scatter(x, y, c=c, s=s, m=m, ax=ax)\n",
"\n",
"plt.show()"
],
"metadata": {
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"x = []\n",
"y = []\n",
"\n",
"symbol = \"AAPL\"\n",
"\n",
"x = range(5)\n",
"y = [5,10,12,15,11]\n",
"\n",
"\n",
"fig, ax = plt.subplots()\n",
"scatter = plotter.m_scatter(x,y,c=[0,0,0,0,0], s=[25,25,25,25,25], m=['a','b','c','d','e'], ax=ax)\n",
"\n",
"plt.show()"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"df_groups = statistics.kpod_clustering(all_rankings)\n",
"val = 0\n",
"#plt.plot(\n",
"# df_groups['group'],\n",
"# np.zeros_like(df_groups['group']) + val,\n",
"# marker=r\"$ {} $\".format(df_groups['group'].index[2], markersize=25)\n",
"#)\n",
"#plt.show()\n",
"\n",
"df_groups['group'].index[2]"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 25,
"outputs": [
{
"ename": "AttributeError",
"evalue": "'Plotter' object has no attribute 'mscatter'",
"output_type": "error",
"traceback": [
"\u001B[1;31m---------------------------------------------------------------------------\u001B[0m",
"\u001B[1;31mAttributeError\u001B[0m Traceback (most recent call last)",
"Cell \u001B[1;32mIn[25], line 12\u001B[0m\n\u001B[0;32m 8\u001B[0m y \u001B[38;5;241m=\u001B[39m [\u001B[38;5;241m5\u001B[39m,\u001B[38;5;241m10\u001B[39m,\u001B[38;5;241m12\u001B[39m,\u001B[38;5;241m15\u001B[39m,\u001B[38;5;241m11\u001B[39m]\n\u001B[0;32m 11\u001B[0m fig, ax \u001B[38;5;241m=\u001B[39m plt\u001B[38;5;241m.\u001B[39msubplots()\n\u001B[1;32m---> 12\u001B[0m scatter \u001B[38;5;241m=\u001B[39m \u001B[43mplotter\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mmscatter\u001B[49m(x,y,c\u001B[38;5;241m=\u001B[39m[\u001B[38;5;241m0\u001B[39m,\u001B[38;5;241m0\u001B[39m,\u001B[38;5;241m0\u001B[39m,\u001B[38;5;241m0\u001B[39m,\u001B[38;5;241m0\u001B[39m], s\u001B[38;5;241m=\u001B[39m[\u001B[38;5;241m25\u001B[39m,\u001B[38;5;241m25\u001B[39m,\u001B[38;5;241m25\u001B[39m,\u001B[38;5;241m25\u001B[39m,\u001B[38;5;241m25\u001B[39m], m\u001B[38;5;241m=\u001B[39m[\u001B[38;5;124m'\u001B[39m\u001B[38;5;124ma\u001B[39m\u001B[38;5;124m'\u001B[39m,\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mb\u001B[39m\u001B[38;5;124m'\u001B[39m,\u001B[38;5;124m'\u001B[39m\u001B[38;5;124mc\u001B[39m\u001B[38;5;124m'\u001B[39m,\u001B[38;5;124m'\u001B[39m\u001B[38;5;124md\u001B[39m\u001B[38;5;124m'\u001B[39m,\u001B[38;5;124m'\u001B[39m\u001B[38;5;124me\u001B[39m\u001B[38;5;124m'\u001B[39m], ax\u001B[38;5;241m=\u001B[39max)\n\u001B[0;32m 14\u001B[0m plt\u001B[38;5;241m.\u001B[39mshow()\n",
"\u001B[1;31mAttributeError\u001B[0m: 'Plotter' object has no attribute 'mscatter'"
},
{
"data": {
"text/plain": "<Figure size 640x480 with 1 Axes>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGmCAYAAACN5NWSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgGklEQVR4nO3df0xV9/3H8dcVuVwsUEJTChUtxAQYXSpUQWmgsy4x/aNJTeMftaFrTaD215hWsTUzFn+sa4sOyxZKbcRuKjOLWusa2pD+SNO0KWrbrF0VQ5fCsHDBiUKRK5fC+f7hlzsR7DzcC54PPB9JE/vhc+/93L2xPHfvAVyWZVkCAAAwzLTrfQAAAICxIGIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARgoqYl577TU9/PDDP7nn3LlzWrNmjbKzs5WTk6NNmzbJ5/MF87AAAACaPtYb7tu3Tzt27ND8+fN/cl9xcbF8Pp/eeOMNdXd367e//a16e3v10ksvjfWhAQAA7EdMe3u7nn/+edXX1ys5Ofkn93755Zc6evSoamtrNWfOHEnS5s2bVVhYqGeeeUa33HLLmA4NAABg++2kb775RuHh4Tpy5Ijmzp37k3uPHz+um2++ORAwkpSTkyOXy6XPP//c/mkBAAD+n+1XYhYvXqzFixdf09729nYlJiYOW3O73YqNjVVbW5vdh5Z06dUdy7IUHh4+ptsDAICJ19/fL5fLpaysrJDd55ivibkWPp9Pbrd7xHpERIT6+vrGdJ+WZcmyLPn9/mCPBwAADDauEePxeEaNjb6+Ps2YMWNM9xkeHi6/36/k5GRFRkYGe0QEwefzqampiVk4ALNwDmbhHMzCWRobGzVtWmh/ssu4RkxCQoLee++9YWt+v1/nz59XfHx8UPcdGRk55hBCaDEL52AWzsEsnINZOIPL5Qr5fY7rD7vLzs6W1+tVc3NzYO3o0aOSpHnz5o3nQwMAgEkupBEzMDCgM2fO6OLFi5KkuXPn6s4779Tq1av11Vdf6bPPPtPGjRu1dOlSvr0aAAAEJaQR09bWpry8PNXW1kq69NLRn/70JyUlJemRRx7RqlWrdPfdd6u0tDSUDwsAAKagoK6JefHFF4f9e1JSkk6dOjVs7aabblJFRUUwDwMAADACvwASAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGsh0xg4ODqqioUH5+vjIzM1VUVKSWlpar7j979qzWrFmjhQsXasGCBVq9erXa29uDOjQAAIDtiKmsrFRNTY22bNmi/fv3a3BwUIWFhfL7/aPuX7VqlVpbW7V7927t3r1bra2teuqpp4I+OAAAmNpsRYzf71d1dbWKi4u1aNEipaenq7y8XF6vV3V1dSP2d3d36+jRoyoqKtLPfvYzZWRk6LHHHtPXX3+t8+fPh+o5AACAKchWxDQ0NOjChQvKzc0NrMXExCgjI0PHjh0bsd/j8eiGG27Q4cOH1dPTo56eHr311ltKSUlRTExM8KcHAABT1nQ7m71eryQpMTFx2Hp8fHzgY5dzu9168cUXtXHjRs2fP18ul0vx8fHau3evpk0L7ppin88X1O0RvKEZMIvrj1k4B7NwDmbhLJZlyeVyhfQ+bUXM0CeC2+0eth4REaGurq4R+y3L0smTJ5WVlaXCwkINDAyovLxcTz75pP76178qKipqzAdvamoa820RWszCOZiFczAL52AWznFlPwTLVsR4PB5Jl66NGfqzJPX19SkyMnLE/nfeeUd79+7Vhx9+GAiWqqoq3XPPPTpw4IAeffTRMR88OTl51MfExPH5fGpqamIWDsAsnINZOAezcJbGxsaQ36etiBl6G6mjo0OzZ88OrHd0dCgtLW3E/uPHjyslJWXYKy433nijUlJS1NzcPNYzS5IiIyM1Y8aMoO4DocEsnINZOAezcA5m4QyhfitJsnlhb3p6uqKiolRfXx9Y6+7u1okTJ5SdnT1if0JCgpqbm9XX1xdY6+3t1enTp5WcnDz2UwMAgCnPVsS43W4VFBRo27Ztev/999XQ0KDVq1crISFBS5Ys0cDAgM6cOaOLFy9KkpYuXSrp0s+KaWhoUENDg5555hlFRETogQceCPmTAQAAU4ftbxEqLi7WsmXLtGHDBi1fvlxhYWHatWuXwsPD1dbWpry8PNXW1kq69F1LNTU1sixLjzzyiFasWKHw8HDV1NQoOjo65E8GAABMHbauiZGksLAwlZSUqKSkZMTHkpKSdOrUqWFrc+bMUVVV1dhPCAAAMAp+ASQAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxkO2IGBwdVUVGh/Px8ZWZmqqioSC0tLVfd39/fr+3btwf2FxQU6OTJk0EdGgAAwHbEVFZWqqamRlu2bNH+/fs1ODiowsJC+f3+UfeXlpbq0KFDeuGFF3Tw4EHFxcWpqKhIP/zwQ9CHBwAAU5etiPH7/aqurlZxcbEWLVqk9PR0lZeXy+v1qq6ubsT+lpYWHTx4UL/73e+Un5+vOXPmaOvWrXK73frnP/8ZsicBAACmHlsR09DQoAsXLig3NzewFhMTo4yMDB07dmzE/k8++UTR0dG6++67h+3/4IMPht0HAACAXdPtbPZ6vZKkxMTEYevx8fGBj13uu+++06xZs1RXV6edO3eqvb1dGRkZeu655zRnzpwgji35fL6gbo/gDc2AWVx/zMI5mIVzMAtnsSxLLpcrpPdpK2KGPhHcbvew9YiICHV1dY3Y39PTo+bmZlVWVmrdunWKiYnRq6++qoceeki1tbW66aabxnzwpqamMd8WocUsnINZOAezcA5m4RxX9kOwbEWMx+ORdOnamKE/S1JfX58iIyNH3vn06erp6VF5eXnglZfy8nL94he/0JtvvqnCwsIxHzw5OXnUx8TE8fl8ampqYhYOwCycg1k4B7NwlsbGxpDfp62IGXobqaOjQ7Nnzw6sd3R0KC0tbcT+hIQETZ8+fdhbRx6PR7NmzdLp06fHemZJUmRkpGbMmBHUfSA0mIVzMAvnYBbOwSycIdRvJUk2L+xNT09XVFSU6uvrA2vd3d06ceKEsrOzR+zPzs7Wjz/+qK+//jqwdvHiRbW0tOi2224L4tgAAGCqs/VKjNvtVkFBgbZt26a4uDjNnDlTZWVlSkhI0JIlSzQwMKDOzk5FR0fL4/Fo/vz5uuuuu/Tss89q8+bNio2NVUVFhcLCwnT//feP13MCAABTgO0fdldcXKxly5Zpw4YNWr58ucLCwrRr1y6Fh4erra1NeXl5qq2tDez/4x//qJycHD399NNatmyZenp69Je//EVxcXEhfSIAAGBqsfVKjCSFhYWppKREJSUlIz6WlJSkU6dODVuLiopSaWmpSktLx3xIAACAK/ELIAEAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCTbETM4OKiKigrl5+crMzNTRUVFamlpuabbHjlyRGlpaTp9+rTtgwIAAFzOdsRUVlaqpqZGW7Zs0f79+zU4OKjCwkL5/f6fvN3333+vzZs3j/mgAAAAl7MVMX6/X9XV1SouLtaiRYuUnp6u8vJyeb1e1dXVXfV2g4ODKikp0e233x70gQEAACSbEdPQ0KALFy4oNzc3sBYTE6OMjAwdO3bsqrerqqpSf3+/Vq5cOfaTAgAAXGa6nc1er1eSlJiYOGw9Pj4+8LErffXVV6qurtaBAwfU3t4+xmOO5PP5QnZfGJuhGTCL649ZOAezcA5m4SyWZcnlcoX0Pm1FzNAngtvtHrYeERGhrq6uEft7e3u1du1arV27VsnJySGNmKamppDdF4LDLJyDWTgHs3AOZuEcV/ZDsGxFjMfjkXTp2pihP0tSX1+fIiMjR+zfunWrUlJS9OCDDwZ5zJGSk5NHfUxMHJ/Pp6amJmbhAMzCOZiFczALZ2lsbAz5fdqKmKG3kTo6OjR79uzAekdHh9LS0kbsP3jwoNxut7KysiRJAwMDkqT77rtPjz/+uB5//PExHzwyMlIzZswY8+0ROszCOZiFczAL52AWzhDqt5IkmxGTnp6uqKgo1dfXByKmu7tbJ06cUEFBwYj9V37H0j/+8Q+VlJRo586dSk1NDeLYAABgqrMVMW63WwUFBdq2bZvi4uI0c+ZMlZWVKSEhQUuWLNHAwIA6OzsVHR0tj8ej2267bdjthy7+vfXWWxUbGxuyJwEAAKYe2z/srri4WMuWLdOGDRu0fPlyhYWFadeuXQoPD1dbW5vy8vJUW1s7HmcFAAAIsPVKjCSFhYWppKREJSUlIz6WlJSkU6dOXfW2CxYs+MmPAwAAXCt+ASQAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjETEAAMBIRAwAADASEQMAAIxkO2IGBwdVUVGh/Px8ZWZmqqioSC0tLVfd39jYqMcee0wLFixQbm6uiouL1draGtShAQAAbEdMZWWlampqtGXLFu3fv1+Dg4MqLCyU3+8fsffcuXNasWKFPB6P9uzZo9dff12dnZ0qLCxUX19fSJ4AAACYmmxFjN/vV3V1tYqLi7Vo0SKlp6ervLxcXq9XdXV1I/a/99576u3t1csvv6zU1FT9/Oc/V1lZmf71r3/piy++CNmTAAAAU4+tiGloaNCFCxeUm5sbWIuJiVFGRoaOHTs2Yn9ubq4qKyvl8Xj++4DTLj1kd3f3WM8MAACg6XY2e71eSVJiYuKw9fj4+MDHLpeUlKSkpKRhazt37pTH41F2drbdsw7j8/mCuj2CNzQDZnH9MQvnYBbOwSycxbIsuVyukN6nrYgZ+kRwu93D1iMiItTV1fU/b79nzx7t3btXGzZsUFxcnJ2HHqGpqSmo2yN0mIVzMAvnYBbOwSyc48p+CJatiBl6W8jv9w97i6ivr0+RkZFXvZ1lWXrllVf06quv6oknntDDDz88xuP+V3Jy8k8+Jsafz+dTU1MTs3AAZuEczMI5mIWzNDY2hvw+bUXM0NtIHR0dmj17dmC9o6NDaWlpo96mv79f69ev19tvv63169fr0UcfHftpLxMZGakZM2aE5L4QHGbhHMzCOZiFczALZwj1W0mSzQt709PTFRUVpfr6+sBad3e3Tpw4cdVrXNatW6d3331X27dvD1nAAAAA2Holxu12q6CgQNu2bVNcXJxmzpypsrIyJSQkaMmSJRoYGFBnZ6eio6Pl8Xh06NAh1dbWat26dcrJydGZM2cC9zW0BwAAYCxs/7C74uJiLVu2TBs2bNDy5csVFhamXbt2KTw8XG1tbcrLy1Ntba0k6e2335Ykvfzyy8rLyxv2z9AeAACAsbD1SowkhYWFqaSkRCUlJSM+lpSUpFOnTgX+vbq6OrjTAQAAXAW/ABIAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEYiYgAAgJGIGAAAYCQiBgAAGImIAQAARiJiAACAkYgYAABgJCIGAAAYiYgBAABGImIAAICRiBgAAGAkIgYAABiJiAEAAEayHTGDg4OqqKhQfn6+MjMzVVRUpJaWlqvuP3funNasWaPs7Gzl5ORo06ZN8vl8QR0aAADAdsRUVlaqpqZGW7Zs0f79+zU4OKjCwkL5/f5R9xcXF6u5uVlvvPGGXnnlFX300UcqLS0N9twAAGCKsxUxfr9f1dXVKi4u1qJFi5Senq7y8nJ5vV7V1dWN2P/ll1/q6NGjeumll3T77bcrNzdXmzdv1ltvvaX29vaQPQkAADD12IqYhoYGXbhwQbm5uYG1mJgYZWRk6NixYyP2Hz9+XDfffLPmzJkTWMvJyZHL5dLnn38exLEBAMBUN93OZq/XK0lKTEwcth4fHx/42OXa29tH7HW73YqNjVVbW5vds0qS+vv7JUmNjY1yuVxjug+EhmVZkpiFEzAL52AWzsEsnKW/vz/kc7AVMUMX5Lrd7mHrERER6urqGnX/lXuH9vf19dl56ICh/wGmTeMbq643l8s16nwx8ZiFczAL52AWzuJyua5vxHg8HkmXro0Z+rMk9fX1KTIyctT9o13w29fXpxkzZtg9qyQpKytrTLcDAACTi62XM4beGuro6Bi23tHRoVtuuWXE/oSEhBF7/X6/zp8/r/j4eLtnBQAACLAVMenp6YqKilJ9fX1grbu7WydOnFB2dvaI/dnZ2fJ6vWpubg6sHT16VJI0b968sZ4ZAADA3ttJbrdbBQUF2rZtm+Li4jRz5kyVlZUpISFBS5Ys0cDAgDo7OxUdHS2Px6O5c+fqzjvv1OrVq1VaWqre3l5t3LhRS5cuHfWVGwAAgGvlsoYu375GAwMD+sMf/qBDhw7p4sWLys7O1saNG5WUlKTTp0/rl7/8pX7/+9/rgQcekCSdPXtWmzZt0scff6yIiAjde++9Wr9+vSIiIsblCQEAgKnBdsQAAAA4Ad+nDAAAjETEAAAAIxExAADASEQMAAAwEhEDAACMRMQAAAAjOS5iBgcHVVFRofz8fGVmZqqoqEgtLS1X3X/u3DmtWbNG2dnZysnJ0aZNmwK/qBLBsTuLxsZGPfbYY1qwYIFyc3NVXFys1tbWCTzx5GV3Fpc7cuSI0tLSdPr06XE+5dRgdxb9/f3avn17YH9BQYFOnjw5gSeevOzO4uzZs1qzZo0WLlyoBQsWaPXq1Wpvb5/AE08dr732mh5++OGf3BOKr9+Oi5jKykrV1NRoy5Yt2r9/vwYHB1VYWDjqL5KUpOLiYjU3N+uNN97QK6+8oo8++kilpaUTe+hJys4szp07pxUrVsjj8WjPnj16/fXX1dnZqcLCwjH/xnL8l92/F0O+//57bd68eYJOOTXYnUVpaakOHTqkF154QQcPHlRcXJyKior0ww8/TPDJJx+7s1i1apVaW1u1e/du7d69W62trXrqqacm+NST3759+7Rjx47/uS8kX78tB+nr67OysrKsffv2Bda6urqsO+64w/r73/8+Yv8XX3xhpaamWt9++21g7eOPP7bS0tIsr9c7IWeerOzO4m9/+5uVlZVl+Xy+wFpra6uVmppqffrppxNy5snK7iyGDAwMWMuXL7d+9atfWampqVZLS8tEHHdSszuLf//731ZaWpr14YcfDtt/zz338PciSHZn0dXVZaWmplrvv/9+YO29996zUlNTrXPnzk3EkSc9r9drrVy50srMzLTuvfdeq6Cg4Kp7Q/X121GvxDQ0NOjChQvKzc0NrMXExCgjI0PHjh0bsf/48eO6+eabNWfOnMBaTk6OXC6XPv/88wk582Rldxa5ubmqrKyUx+MJrE2bdunTq7u7e/wPPInZncWQqqoq9ff3a+XKlRNxzCnB7iw++eQTRUdH6+677x62/4MPPhh2H7DP7iw8Ho9uuOEGHT58WD09Perp6dFbb72llJQUxcTETOTRJ61vvvlG4eHhOnLkiObOnfuTe0P19dvWL4Acb16vV5KUmJg4bD0+Pj7wscu1t7eP2Ot2uxUbG6u2trbxO+gUYHcWSUlJSkpKGra2c+dOeTyeUX/DOa6d3VlI0ldffaXq6modOHCA9/xDyO4svvvuO82aNUt1dXXauXOn2tvblZGRoeeee27Yf7xhn91ZuN1uvfjii9q4caPmz58vl8ul+Ph47d27N/B/uBCcxYsXa/Hixde0N1Rfvx01uaELetxu97D1iIiIUa+r8Pl8I/b+1H5cO7uzuNKePXu0d+9erV27VnFxceNyxqnC7ix6e3u1du1arV27VsnJyRNxxCnD7ix6enrU3NysyspKPfPMM3r11Vc1ffp0PfTQQzp79uyEnHmysjsLy7J08uRJZWVlad++ffrzn/+sW2+9VU8++aR6enom5Mz4r1B9/XZUxAy9FXHlRVl9fX2KjIwcdf9oF3D19fVpxowZ43PIKcLuLIZYlqUdO3Zo69ateuKJJ/7n1en43+zOYuvWrUpJSdGDDz44IeebSuzOYvr06erp6VF5ebny8vJ0xx13qLy8XJL05ptvjv+BJzG7s3jnnXe0d+9elZWVad68ecrJyVFVVZW+//57HThwYELOjP8K1ddvR0XM0EtLHR0dw9Y7Ojp0yy23jNifkJAwYq/f79f58+cVHx8/fgedAuzOQrr0raQlJSWqqqrS+vXrtWrVqvE+5pRgdxYHDx7Up59+qqysLGVlZamoqEiSdN9996mqqmr8DzyJjeW/UdOnTx/21pHH49GsWbP4lvcg2Z3F8ePHlZKSoqioqMDajTfeqJSUFDU3N4/vYTFCqL5+Oypi0tPTFRUVpfr6+sBad3e3Tpw4Mep1FdnZ2fJ6vcM+AY8ePSpJmjdv3vgfeBKzOwtJWrdund59911t375djz766ASddPKzO4u6ujq9/fbbOnz4sA4fPqytW7dKunSNEq/OBGcs/4368ccf9fXXXwfWLl68qJaWFt12220TcubJyu4sEhIS1NzcPOytit7eXp0+fZq3Xa+DUH39dtSFvW63WwUFBdq2bZvi4uI0c+ZMlZWVKSEhQUuWLNHAwIA6OzsVHR0tj8ejuXPn6s4779Tq1atVWlqq3t5ebdy4UUuXLr3qqwW4NnZncejQIdXW1mrdunXKycnRmTNnAvc1tAdjY3cWV35xHLrI8dZbb1VsbOx1eAaTh91ZzJ8/X3fddZeeffZZbd68WbGxsaqoqFBYWJjuv//+6/10jGZ3FkuXLtWuXbu0atUq/eY3v5Ek7dixQxEREXrggQeu87OZ/Mbt63cQ3xI+Ln788Ufr5ZdfthYuXGhlZmZaRUVFgZ9v0dLSYqWmploHDx4M7P/Pf/5j/frXv7YyMzOtBQsWWM8//7x18eLF63X8ScXOLFasWGGlpqaO+s/l88LY2P17cbnPPvuMnxMTQnZn8cMPP1jPP/+8tWDBAmvu3LnWihUrrMbGxut1/EnF7iy+/fZba+XKlVZOTo61cOFC6+mnn+bvxTh59tlnh/2cmPH6+u2yLMsav/YCAAAYH466JgYAAOBaETEAAMBIRAwAADASEQMAAIxExAAAACMRMQAAwEhEDAAAMBIRAwAAjETEAAAAIxExAADASEQMAAAwEhEDAACM9H/S1SBAnzjyDQAAAABJRU5ErkJggg=="
},
"metadata": {},
"output_type": "display_data"
"import matplotlib.pyplot as plt\n",
"x = []\n",
"y = []\n",
"\n",
"symbol = \"AAPL\"\n",
"\n",
"x = range(5)\n",
"y = [5,10,12,15,11]\n",
"\n",
"\n",
"fig, ax = plt.subplots()\n",
"scatter = plotter.m_scatter(x,y,c=[0,0,0,0,0], s=[25,25,25,25,25], m=['a','b','c','d','e'], ax=ax)\n",
"\n",
"plt.show()"
],
"metadata": {
}
},
{
"cell_type": "code",
"execution_count": null,
"outputs": [],
"source": [
"df_groups = statistics.kpod_clustering(all_rankings)\n",
"val = 0\n",
"#plt.plot(\n",
"# df_groups['group'],\n",
"# np.zeros_like(df_groups['group']) + val,\n",
"# marker=r\"$ {} $\".format(df_groups['group'].index[2], markersize=25)\n",
"#)\n",
"#plt.show()\n",
"\n",
"df_groups['group'].index[2]"
"metadata": {
}
},
{
"cell_type": "markdown",
"source": [
"## Checking for quality of study design\n",
"Is there an influence of gender, academic roles, scientific discipline to the data?\n",
"Is there a time or order bias in it?\n",
"Disconfirming the corresponding claims would increase the quality of the findings above."
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% md\n"
}
}
},
{
"cell_type": "code",
"source": [
"# Our chosen population was unpaired, so we got independent data and use independent methods.\n",
"# Are our dependent variables normally / gaussian distributed? \"D’Agostino-Pearson normality test\" has the answer.\n",
"# Just use the two-tailed tests. one-tailed do not apply for our discipline\n",
"# Even though our dependent variables were collected with 7-point-Likert-scales, the amount of possible outcomes is enough to justify a parametric statistical approach. Usually it is not recommended to do this with scores in fewer than a dozen categories, but including the means of the answers, justifies this option.\n",
"# gender, academic role and scientific discipline are qualitative and nominal -> independent t-test?!\n",
"# time is continuous and ratio data\n",
"# worked on pages is quantitative, discrete and in an interval\n",
"\n",
"# according to figure 4 in https://www.biochemia-medica.com/assets/images/upload/xml_tif/Marusteri_M_-_Comparing_groups_for_statistical_differences.pdf I derive the (Welch corrected) unpaired t-test to check for gender, academic role and scientific discipline (if they are not equal in variance)\n",
"\n",
"# create DFs for every variable\n",
"df_sex = df_filtered['DE02'] \\\n",
" .replace(1, 'male') \\\n",
" .replace(2, 'female') \\\n",
" .replace(3, 'diverse') \\\n",
" .replace(-1, 'not mentioned')\n",
"\n",
"# group df_filtered according to these DFs\n",
"\n",
"# check for common variance"
],
"metadata": {
"outputs": [],
"source": [],
"metadata": {
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0