Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
HPC Benchmark Game
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dorian Stoll
HPC Benchmark Game
Commits
679969f2
Verified
Commit
679969f2
authored
9 months ago
by
Dorian Stoll
Browse files
Options
Downloads
Patches
Plain Diff
nas-ft: julia: Initial port
parent
c6ec6edb
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/benchmarks/nas-ft/julia/Project.toml
+7
-0
7 additions, 0 deletions
src/benchmarks/nas-ft/julia/Project.toml
src/benchmarks/nas-ft/julia/src/ft.jl
+408
-0
408 additions, 0 deletions
src/benchmarks/nas-ft/julia/src/ft.jl
with
415 additions
and
0 deletions
src/benchmarks/nas-ft/julia/Project.toml
0 → 100644
+
7
−
0
View file @
679969f2
name
=
"ft"
uuid
=
"6c99acc8-2c4b-4fe5-977d-7192d3588e0c"
authors
=
[
"Dorian Stoll <dorian.stoll@uni-potsdam.de>"
]
version
=
"0.1.0"
[deps]
FLoops
=
"cc61a311-1640-44b5-9fba-1b764f453329"
This diff is collapsed.
Click to expand it.
src/benchmarks/nas-ft/julia/src/ft.jl
0 → 100644
+
408
−
0
View file @
679969f2
#!/usr/bin/env julia
using
FLoops
using
Printf
using
StaticArrays
# Class C
const
NX
::
Int
=
512
const
NY
::
Int
=
512
const
NZ
::
Int
=
512
const
MAXDIM
::
Int
=
512
const
NITER_DEFAULT
::
Int
=
20
# Total number of grid points with padding
const
NXP
::
Int
=
NX
+
1
const
NTOTALP
::
Int
=
NXP
*
NY
*
NZ
const
NTOTALF
::
Float64
=
Float64
(
NXP
)
*
NY
*
NZ
# If processor array is 1x1 -> 0D grid decomposition
# Cache blocking params. These values are good for most RISC processors.
# FFT parameters:
# fftblock controls how many ffts are done at a time.
# The default is appropriate for most cache-based machines
# On vector machines, the FFT can be vectorized with vector
# length equal to the block size, so the block size should
# be as large as possible. This is the size of the smallest
# dimension of the problem: 128 for class A, 256 for class B and
# 512 for class C.
const
FFTBLOCK_DEFAULT
::
Int
=
32
const
FFTBLOCKPAD_DEFAULT
::
Int
=
FFTBLOCK_DEFAULT
+
2
# other stuff
const
SEED
::
Int
=
314159265
const
ALPHA
::
Float64
=
1E-6
global
debug
::
Bool
global
niter
::
Int
global
fftblock
::
Int
global
fftblockpad
::
Int
global
u
::
Array
{
ComplexF64
,
1
}
global
u0
::
Array
{
ComplexF64
,
3
}
global
u1
::
Array
{
ComplexF64
,
3
}
global
twiddle
::
Array
{
Float64
,
3
}
function
ilog2
(
n
::
Int
)
::
Int
if
n
==
1
return
0
end
lg
::
Int
=
1
nn
::
Int
=
2
while
nn
<
n
nn
*=
2
lg
+=
1
end
return
lg
end
function
alloc_space
()
global
u
=
zeros
(
ComplexF64
,
NXP
)
global
u0
=
zeros
(
ComplexF64
,
(
NXP
,
NY
,
NZ
))
global
u1
=
zeros
(
ComplexF64
,
(
NXP
,
NY
,
NZ
))
global
twiddle
=
zeros
(
Float64
,
(
NXP
,
NY
,
NZ
))
end
function
setup
()
global
debug
=
false
global
niter
=
NITER_DEFAULT
@printf
"
\n
"
@printf
"
\n
"
@printf
" NAS Parallel Benchmarks (NPB3.4-OMP) - FT Benchmark
\n
"
@printf
"
\n
"
@printf
" Size : %dx%dx%d
\n
"
NX
NY
NZ
@printf
" Iterations : %d
\n
"
niter
@printf
" Number of available threads : %d
\n
"
Threads
.
nthreads
()
@printf
"
\n
"
# ---------------------------------------------------------------------
# Set up info for blocking of ffts and transposes. This improves
# performance on cache-based systems. Blocking involves
# working on a chunk of the problem at a time, taking chunks
# along the first, second, or third dimension.
#
# - In cffts1 blocking is on 2nd dimension (with fft on 1st dim)
# - In cffts2/3 blocking is on 1st dimension (with fft on 2nd and 3rd dims)
#
# Since 1st dim is always in processor, we'll assume it's long enough
# (default blocking factor is 16 so min size for 1st dim is 16)
# The only case we have to worry about is cffts1 in a 2d decomposition.
# so the blocking factor should not be larger than the 2nd dimension.
# ---------------------------------------------------------------------
global
fftblock
=
FFTBLOCK_DEFAULT
global
fftblockpad
=
FFTBLOCKPAD_DEFAULT
if
fftblock
!=
FFTBLOCK_DEFAULT
fftblockpad
=
FFTBLOCK_DEFAULT
+
3
end
end
# ---------------------------------------------------------------------
# compute function from local (i,j,k) to ibar^2+jbar^2+kbar^2
# for time evolution exponent.
# ---------------------------------------------------------------------
function
compute_indexmap
()
AP
::
Float64
=
-
4
*
ALPHA
*
pi
*
pi
d1
::
Int
=
size
(
twiddle
,
1
)
-
1
d2
::
Int
=
size
(
twiddle
,
2
)
d3
::
Int
=
size
(
twiddle
,
3
)
# ---------------------------------------------------------------------
# basically we want to convert the fortran indices
# 1 2 3 4 5 6 7 8
# to
# 0 1 2 3 -4 -3 -2 -1
# The following magic formula does the trick:
# mod(i-1+n/2, n) - n/2
# ---------------------------------------------------------------------
@floop
for
k
=
1
:
d3
,
j
=
1
:
d2
kk
::
Int
=
mod
(
k
-
1
+
d3
/
2
,
d3
)
-
d3
/
2
kk2
::
Int
=
kk
*
kk
jj
::
Int
=
mod
(
j
-
1
+
d2
/
2
,
d2
)
-
d2
/
2
kj2
::
Int
=
jj
*
jj
+
kk2
for
i
=
1
:
d1
ii
::
Int
=
mod
(
i
-
1
+
d1
/
2
,
d1
)
-
d1
/
2
twiddle
[
i
,
j
,
k
]
=
exp
(
AP
*
(
ii
*
ii
+
kj2
))
end
end
end
function
compute_initial_conditions
()
@ccall
srand48
(
SEED
::
Clong
)
::
Cvoid
for
k
in
axes
(
u1
,
3
),
j
in
axes
(
u1
,
2
),
i
in
axes
(
u1
,
1
)
u1
[
i
,
j
,
k
]
=
@ccall
drand48
()
::
Cdouble
end
end
function
evolve
()
# ---------------------------------------------------------------------
# evolve u0 -> u1 (t time steps) in fourier space
# ---------------------------------------------------------------------
d1
::
Int
=
size
(
u0
,
1
)
-
1
d2
::
Int
=
size
(
u0
,
2
)
d3
::
Int
=
size
(
u0
,
3
)
@floop
for
k
=
1
:
d3
,
j
=
1
:
d2
,
i
=
1
:
d1
u0
[
i
,
j
,
k
]
*=
twiddle
[
i
,
j
,
k
]
u1
[
i
,
j
,
k
]
=
u0
[
i
,
j
,
k
]
end
end
# ---------------------------------------------------------------------
# compute the roots-of-unity array that will be used for subsequent FFTs.
# ---------------------------------------------------------------------
function
fft_init
()
# ---------------------------------------------------------------------
# Initialize the U array with sines and cosines in a manner that permits
# stride one access at each FFT iteration.
# ---------------------------------------------------------------------
m
::
Int
=
ilog2
(
size
(
u0
,
1
)
-
1
)
u
[
1
]
=
m
ku
::
Int
=
2
ln
::
Int
=
1
for
j
=
1
:
m
t
::
Float64
=
pi
/
ln
for
i
=
0
:
ln
-
1
ti
::
Float64
=
i
*
t
u
[
i
+
ku
]
=
complex
(
cos
(
ti
),
sin
(
ti
))
end
ku
+=
ln
ln
*=
2
end
end
function
fft
(
dir
::
Int
,
x1
::
Array
{
ComplexF64
,
3
},
x2
::
Array
{
ComplexF64
,
3
})
# ---------------------------------------------------------------------
# note: args x1, x2 must be different arrays
# note: args for cfftsx are (direction, layout, xin, xout, scratch)
# xin/xout may be the same and it can be somewhat faster
# if they are
# ---------------------------------------------------------------------
if
dir
==
1
cffts1
(
1
,
x1
,
x1
)
cffts2
(
1
,
x1
,
x1
)
cffts3
(
1
,
x1
,
x2
)
else
cffts3
(
-
1
,
x1
,
x1
)
cffts2
(
-
1
,
x1
,
x1
)
cffts1
(
-
1
,
x1
,
x2
)
end
end
function
cffts1
(
is
::
Int
,
x
::
Array
{
ComplexF64
,
3
},
xout
::
Array
{
ComplexF64
,
3
})
d1
::
Int
=
size
(
x
,
1
)
-
1
d2
::
Int
=
size
(
x
,
2
)
d3
::
Int
=
size
(
x
,
3
)
logd1
::
Int
=
ilog2
(
d1
)
@floop
for
k
=
1
:
d3
,
jn
=
0
:
d2
/
fftblock
-
1
@init
y1
=
zeros
(
ComplexF64
,
(
fftblockpad
,
MAXDIM
))
@init
y2
=
zeros
(
ComplexF64
,
(
fftblockpad
,
MAXDIM
))
jj
::
Int
=
jn
*
fftblock
for
j
=
1
:
fftblock
,
i
=
1
:
d1
y1
[
j
,
i
]
=
x
[
i
,
j
+
jj
,
k
]
end
cfftz
(
is
,
logd1
,
d1
,
y1
,
y2
)
for
j
=
1
:
fftblock
,
i
=
1
:
d1
xout
[
i
,
j
+
jj
,
k
]
=
y1
[
j
,
i
]
end
end
end
function
cffts2
(
is
::
Int
,
x
::
Array
{
ComplexF64
,
3
},
xout
::
Array
{
ComplexF64
,
3
})
d1
::
Int
=
size
(
x
,
1
)
-
1
d2
::
Int
=
size
(
x
,
2
)
d3
::
Int
=
size
(
x
,
3
)
logd2
::
Int
=
ilog2
(
d2
)
@floop
for
k
=
1
:
d3
,
in
=
0
:
d1
/
fftblock
-
1
@init
y1
=
zeros
(
ComplexF64
,
(
fftblockpad
,
MAXDIM
))
@init
y2
=
zeros
(
ComplexF64
,
(
fftblockpad
,
MAXDIM
))
ii
::
Int
=
in
*
fftblock
for
j
=
1
:
d2
,
i
=
1
:
fftblock
y1
[
i
,
j
]
=
x
[
i
+
ii
,
j
,
k
]
end
cfftz
(
is
,
logd2
,
d2
,
y1
,
y2
)
for
j
=
1
:
d2
,
i
=
1
:
fftblock
xout
[
i
+
ii
,
j
,
k
]
=
y1
[
i
,
j
]
end
end
end
function
cffts3
(
is
::
Int
,
x
::
Array
{
ComplexF64
,
3
},
xout
::
Array
{
ComplexF64
,
3
})
d1
::
Int
=
size
(
x
,
1
)
-
1
d2
::
Int
=
size
(
x
,
2
)
d3
::
Int
=
size
(
x
,
3
)
logd3
::
Int
=
ilog2
(
d3
)
@floop
for
j
=
1
:
d2
,
in
=
0
:
d1
/
fftblock
-
1
@init
y1
=
zeros
(
ComplexF64
,
(
fftblockpad
,
MAXDIM
))
@init
y2
=
zeros
(
ComplexF64
,
(
fftblockpad
,
MAXDIM
))
ii
::
Int
=
in
*
fftblock
for
k
=
1
:
d3
,
i
=
1
:
fftblock
y1
[
i
,
k
]
=
x
[
i
+
ii
,
j
,
k
]
end
cfftz
(
is
,
logd3
,
d3
,
y1
,
y2
)
for
k
=
1
:
d3
,
i
=
1
:
fftblock
xout
[
i
+
ii
,
j
,
k
]
=
y1
[
i
,
k
]
end
end
end
function
cfftz
(
is
::
Int
,
m
::
Int
,
n
::
Int
,
x
::
Array
{
ComplexF64
,
2
},
y
::
Array
{
ComplexF64
,
2
})
# ---------------------------------------------------------------------
# Computes NY N-point complex-to-complex FFTs of X using an algorithm due
# to Swarztrauber. X is both the input and the output array, while Y is a
# scratch array. It is assumed that N = 2^M. Before calling CFFTZ to
# perform FFTs, the array U must be initialized by calling CFFTZ with IS
# set to 0 and M set to MX, where MX is the maximum value of M for any
# subsequent call.
# ---------------------------------------------------------------------
# ---------------------------------------------------------------------
# Check if input parameters are invalid.
# ---------------------------------------------------------------------
mx
::
Int
=
real
(
u
[
1
])
if
(
is
!=
1
&&
is
!=
-
1
)
||
m
<
1
||
m
>
mx
error
(
@sprintf
"CFFTZ: Either U has not been initialized, or else one of the input parameters is invalid %d %d %d"
is
m
mx
)
end
# ---------------------------------------------------------------------
# Perform one variant of the Stockham FFT.
# ---------------------------------------------------------------------
for
l
=
1
:
2
:
m
fftz2
(
is
,
l
,
m
,
n
,
fftblock
,
x
,
y
)
if
l
==
m
# ---------------------------------------------------------------------
# Copy Y to X.
# ---------------------------------------------------------------------
for
j
=
1
:
n
,
i
=
1
:
fftblock
x
[
i
,
j
]
=
y
[
i
,
j
]
end
continue
end
fftz2
(
is
,
l
+
1
,
m
,
n
,
fftblock
,
y
,
x
)
end
end
function
fftz2
(
is
::
Int
,
l
::
Int
,
m
::
Int
,
n
::
Int
,
ny
::
Int
,
x
::
Array
{
ComplexF64
,
2
},
y
::
Array
{
ComplexF64
,
2
})
n1
::
Int
=
n
/
2
lk
::
Int
=
2
^
(
l
-
1
)
li
::
Int
=
2
^
(
m
-
l
)
lj
::
Int
=
2
*
lk
ku
::
Int
=
li
+
1
for
i
=
0
:
li
-
1
i11
::
Int
=
i
*
lk
+
1
i12
::
Int
=
i11
+
n1
i21
::
Int
=
i
*
lj
+
1
i22
::
Int
=
i21
+
lk
u1
::
ComplexF64
=
0
if
is
>=
1
u1
=
u
[
ku
+
i
]
else
u1
=
conj
(
u
[
ku
+
i
])
end
for
k
=
0
:
lk
-
1
,
j
=
1
:
ny
x11
::
ComplexF64
=
x
[
j
,
i11
+
k
]
x21
::
ComplexF64
=
x
[
j
,
i12
+
k
]
y
[
j
,
i21
+
k
]
=
x11
+
x21
y
[
j
,
i22
+
k
]
=
u1
*
(
x11
-
x21
)
end
end
end
function
checksum
(
i
::
Int
)
chk
::
ComplexF64
=
0
@floop
for
j
=
1
:
1024
q
::
Int
=
mod
(
j
,
NX
)
+
1
r
::
Int
=
mod
(
3
*
j
,
NY
)
+
1
s
::
Int
=
mod
(
5
*
j
,
NZ
)
+
1
@reduce
chk
+=
u1
[
q
,
r
,
s
]
end
chk
/=
NTOTALF
@printf
" T = %d Checksum = %.10E %.10E
\n
"
i
real
(
chk
)
imag
(
chk
)
end
function
main
()
alloc_space
()
setup
()
# ---------------------------------------------------------------------
# Run the entire problem once to make sure all data is touched.
# This reduces variable startup costs, which is important for such a
# short benchmark. The other NPB 2 implementations are similar.
# ---------------------------------------------------------------------
compute_indexmap
()
compute_initial_conditions
()
fft_init
()
fft
(
1
,
u1
,
u0
)
# ---------------------------------------------------------------------
# Start over from the beginning. Note that all operations must
# be timed, in contrast to other benchmarks.
# ---------------------------------------------------------------------
compute_indexmap
()
compute_initial_conditions
()
fft_init
()
fft
(
1
,
u1
,
u0
)
for
iter
=
1
:
niter
evolve
()
fft
(
-
1
,
u1
,
u1
)
checksum
(
iter
)
end
end
main
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment