Skip to content
Snippets Groups Projects
ft.f90 40.5 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
!-------------------------------------------------------------------------!
!                                                                         !
!        N  A  S     P A R A L L E L     B E N C H M A R K S  3.4         !
!                                                                         !
!                       O p e n M P     V E R S I O N                     !
!                                                                         !
!                                   F T                                   !
!                                                                         !
!-------------------------------------------------------------------------!
!                                                                         !
!    This benchmark is an OpenMP version of the NPB FT code.              !
!    It is described in NAS Technical Report 99-011.                      !
!                                                                         !
!    Permission to use, copy, distribute and modify this software         !
!    for any purpose with or without fee is hereby granted.  We           !
!    request, however, that all derived work reference the NAS            !
!    Parallel Benchmarks 3.4. This software is provided "as is"           !
!    without express or implied warranty.                                 !
!                                                                         !
!    Information on NPB 3.4, including the technical report, the          !
!    original specifications, source code, results and information        !
!    on how to submit new results, is available at:                       !
!                                                                         !
!           http://www.nas.nasa.gov/Software/NPB/                         !
!                                                                         !
!    Send comments or suggestions to  npb@nas.nasa.gov                    !
!                                                                         !
!          NAS Parallel Benchmarks Group                                  !
!          NASA Ames Research Center                                      !
!          Mail Stop: T27A-1                                              !
!          Moffett Field, CA   94035-1000                                 !
!                                                                         !
!          E-mail:  npb@nas.nasa.gov                                      !
!          Fax:     (650) 604-3957                                        !
!                                                                         !
!-------------------------------------------------------------------------!

!---------------------------------------------------------------------
!
! Authors: D. Bailey
!          W. Saphir
!          H. Jin
!
!---------------------------------------------------------------------

!---------------------------------------------------------------------

!---------------------------------------------------------------------
! FT benchmark
!---------------------------------------------------------------------

!---------------------------------------------------------------------
!---------------------------------------------------------------------

      program ft

!---------------------------------------------------------------------
!---------------------------------------------------------------------

!---------------------------------------------------------------------
! Module ft_fields defines main arrays (u0, u1, u2) in the problem
!---------------------------------------------------------------------

      use ft_data
      use ft_fields

      implicit none

      integer i

      integer iter
      double precision total_time, mflops
      logical verified
      character class


!---------------------------------------------------------------------
! Run the entire problem once to make sure all data is touched. 
! This reduces variable startup costs, which is important for such a 
! short benchmark. The other NPB 2 implementations are similar. 
!---------------------------------------------------------------------
      do i = 1, t_max
         call timer_clear(i)
      end do

      call alloc_space

      call setup()
      call init_ui(u0, u1, twiddle, dims(1), dims(2), dims(3))
      call compute_indexmap(twiddle, dims(1), dims(2), dims(3))
      call compute_initial_conditions(u1, dims(1), dims(2), dims(3))
      call fft_init (dims(1))
      call fft(1, u1, u0)

!---------------------------------------------------------------------
! Start over from the beginning. Note that all operations must
! be timed, in contrast to other benchmarks. 
!---------------------------------------------------------------------
      do i = 1, t_max
         call timer_clear(i)
      end do

      call timer_start(T_total)
      if (timers_enabled) call timer_start(T_setup)

      call compute_indexmap(twiddle, dims(1), dims(2), dims(3))

      call compute_initial_conditions(u1, dims(1), dims(2), dims(3))

      call fft_init (dims(1))

      if (timers_enabled) call timer_stop(T_setup)
      if (timers_enabled) call timer_start(T_fft)
      call fft(1, u1, u0)
      if (timers_enabled) call timer_stop(T_fft)

      do iter = 1, niter
         if (timers_enabled) call timer_start(T_evolve)
         call evolve(u0, u1, twiddle, dims(1), dims(2), dims(3))
         if (timers_enabled) call timer_stop(T_evolve)
         if (timers_enabled) call timer_start(T_fft)
!         call fft(-1, u1, u2)
         call fft(-1, u1, u1)
         if (timers_enabled) call timer_stop(T_fft)
         if (timers_enabled) call timer_start(T_checksum)
!         call checksum(iter, u2, dims(1), dims(2), dims(3))
         call checksum(iter, u1, dims(1), dims(2), dims(3))
         if (timers_enabled) call timer_stop(T_checksum)
      end do

      call verify(nx, ny, nz, niter, verified, class)

      call timer_stop(t_total)
      total_time = timer_read(t_total)

      if( total_time .ne. 0. ) then
         mflops = 1.0d-6*ntotal_f *  &
     &             (14.8157+7.19641*log(ntotal_f)  &
     &          +  (5.23518+7.21113*log(ntotal_f))*niter)  &
     &                 /total_time
      else
         mflops = 0.0
      endif
      call print_results('FT', class, nx, ny, nz, niter,  &
     &  total_time, mflops, '          floating point', verified,  &
     &  npbversion, compiletime, cs1, cs2, cs3, cs4, cs5, cs6, cs7)
      if (timers_enabled) call print_timers()

      end

!---------------------------------------------------------------------
!---------------------------------------------------------------------

      subroutine init_ui(u0, u1, twiddle, d1, d2, d3)

!---------------------------------------------------------------------
!---------------------------------------------------------------------

!---------------------------------------------------------------------
! touch all the big data
!---------------------------------------------------------------------

      implicit none
      integer d1, d2, d3
      double complex   u0(d1+1,d2,d3)
      double complex   u1(d1+1,d2,d3)
      double precision twiddle(d1+1,d2,d3)
      integer i, j, k

!$omp parallel do default(shared) private(i,j,k) collapse(2)
      do k = 1, d3
         do j = 1, d2
            do i = 1, d1
               u0(i,j,k) = 0.d0
               u1(i,j,k) = 0.d0
               twiddle(i,j,k) = 0.d0
            end do
         end do
      end do

      return
      end

!---------------------------------------------------------------------
!---------------------------------------------------------------------

      subroutine evolve(u0, u1, twiddle, d1, d2, d3)

!---------------------------------------------------------------------
!---------------------------------------------------------------------

!---------------------------------------------------------------------
! evolve u0 -> u1 (t time steps) in fourier space
!---------------------------------------------------------------------

      use ft_data
      implicit none

      integer d1, d2, d3
      double complex   u0(d1+1,d2,d3)
      double complex   u1(d1+1,d2,d3)
      double precision twiddle(d1+1,d2,d3)
      integer i, j, k

!$omp parallel do default(shared) private(i,j,k) collapse(2)
      do k = 1, d3
         do j = 1, d2
            do i = 1, d1
               u0(i,j,k) = u0(i,j,k) * twiddle(i,j,k)
               u1(i,j,k) = u0(i,j,k)
            end do
         end do
      end do

      return
      end


!---------------------------------------------------------------------
!---------------------------------------------------------------------

      subroutine compute_initial_conditions(u0, d1, d2, d3)

!---------------------------------------------------------------------
!---------------------------------------------------------------------

!---------------------------------------------------------------------
! Fill in array u0 with initial conditions from 
! random number generator 
!---------------------------------------------------------------------

      use ft_data
      implicit none

      integer d1, d2, d3
      double complex u0(d1+1, d2, d3)
      integer k, j
      double precision x0, start, an, dummy, starts(nz)
      

      start = seed
!---------------------------------------------------------------------
! Jump to the starting element for our first plane.
!---------------------------------------------------------------------
      call ipow46(a, 0, an)
      dummy = randlc(start, an)
      call ipow46(a, 2*nx*ny, an)

      starts(1) = start
      do k = 2, dims(3)
         dummy = randlc(start, an)
         starts(k) = start
      end do
      
!---------------------------------------------------------------------
! Go through by z planes filling in one square at a time.
!---------------------------------------------------------------------
!$omp parallel do default(shared) private(k,j,x0)
      do k = 1, dims(3) 
         x0 = starts(k)
         do j = 1, dims(2) 
            call vranlc(2*nx, x0, a, u0(1, j, k))
         end do
      end do

      return
      end


!---------------------------------------------------------------------
!---------------------------------------------------------------------

      subroutine ipow46(a, exponent, result)

!---------------------------------------------------------------------
!---------------------------------------------------------------------

!---------------------------------------------------------------------
! compute a^exponent mod 2^46
!---------------------------------------------------------------------

      implicit none
      double precision a, result, dummy, q, r
      integer exponent, n, n2
      external randlc
      double precision randlc
!---------------------------------------------------------------------
! Use
!   a^n = a^(n/2)*a^(n/2) if n even else
!   a^n = a*a^(n-1)       if n odd
!---------------------------------------------------------------------
      result = 1
      if (exponent .eq. 0) return
      q = a
      r = 1
      n = exponent


      do while (n .gt. 1)
         n2 = n/2
         if (n2 * 2 .eq. n) then
            dummy = randlc(q, q) 
            n = n2
         else
            dummy = randlc(r, q)
            n = n-1
         endif
      end do
      dummy = randlc(r, q)
      result = r
      return
      end


!---------------------------------------------------------------------
!---------------------------------------------------------------------

      subroutine setup

!---------------------------------------------------------------------
!---------------------------------------------------------------------

      use ft_data
      implicit none

!$    integer  omp_get_max_threads
!$    external omp_get_max_threads
      debug = .FALSE.

      call check_timer_flag( timers_enabled )

      write(*, 1000)

      niter = niter_default

      write(*, 1001) nx, ny, nz
      write(*, 1002) niter
!$    write(*, 1003) omp_get_max_threads()
      write(*, *)


 1000 format(//,' NAS Parallel Benchmarks (NPB3.4-OMP)',  &
     &          ' - FT Benchmark', /)
 1001 format(' Size                : ', i4, 'x', i4, 'x', i4)
 1002 format(' Iterations                  :', i7)
 1003 format(' Number of available threads :', i7)

      dims(1) = nx
      dims(2) = ny
      dims(3) = nz


!---------------------------------------------------------------------
! Set up info for blocking of ffts and transposes.  This improves
! performance on cache-based systems. Blocking involves
! working on a chunk of the problem at a time, taking chunks
! along the first, second, or third dimension. 
!
! - In cffts1 blocking is on 2nd dimension (with fft on 1st dim)
! - In cffts2/3 blocking is on 1st dimension (with fft on 2nd and 3rd dims)

! Since 1st dim is always in processor, we'll assume it's long enough 
! (default blocking factor is 16 so min size for 1st dim is 16)
! The only case we have to worry about is cffts1 in a 2d decomposition. 
! so the blocking factor should not be larger than the 2nd dimension. 
!---------------------------------------------------------------------

      fftblock = fftblock_default
      fftblockpad = fftblockpad_default

      if (fftblock .ne. fftblock_default) fftblockpad = fftblock+3

      return
      end

      
!---------------------------------------------------------------------
!---------------------------------------------------------------------

      subroutine compute_indexmap(twiddle, d1, d2, d3)

!---------------------------------------------------------------------
!---------------------------------------------------------------------

!---------------------------------------------------------------------
! compute function from local (i,j,k) to ibar^2+jbar^2+kbar^2 
! for time evolution exponent. 
!---------------------------------------------------------------------

      use ft_data
      implicit none

      integer d1, d2, d3
      double precision twiddle(d1+1, d2, d3)
      integer i, j, k, kk, kk2, jj, kj2, ii
      double precision ap

!---------------------------------------------------------------------
! basically we want to convert the fortran indices 
!   1 2 3 4 5 6 7 8 
! to 
!   0 1 2 3 -4 -3 -2 -1
! The following magic formula does the trick:
! mod(i-1+n/2, n) - n/2
!---------------------------------------------------------------------

      ap = - 4.d0 * alpha * pi *pi

!$omp parallel do default(shared) private(i,j,k,kk,kk2,jj,kj2,ii)  &
!$omp&  collapse(2)
      do k = 1, dims(3)
         do j = 1, dims(2)
            kk =  mod(k-1+nz/2, nz) - nz/2
            kk2 = kk*kk
            jj = mod(j-1+ny/2, ny) - ny/2
            kj2 = jj*jj+kk2
            do i = 1, dims(1)
               ii = mod(i-1+nx/2, nx) - nx/2
               twiddle(i,j,k) = dexp(ap*dble(ii*ii+kj2))
            end do
         end do
      end do

      return
      end



!---------------------------------------------------------------------
!---------------------------------------------------------------------

      subroutine print_timers()

!---------------------------------------------------------------------
!---------------------------------------------------------------------

      use ft_data
      implicit none

      integer i
      double precision t, t_m
      character*25 tstrings(T_max)
      data tstrings / '          total ',  &
     &                '          setup ',  &
     &                '            fft ',  &
     &                '         evolve ',  &
     &                '       checksum ',  &
     &                '           fftx ',  &
     &                '           ffty ',  &
     &                '           fftz ' /

      t_m = timer_read(T_total)
      if (t_m .le. 0.0d0) t_m = 1.0d0
      do i = 1, t_max
         t = timer_read(i)
         write(*, 100) i, tstrings(i), t, t*100.0/t_m
      end do
 100  format(' timer ', i2, '(', A16,  ') :', F9.4, ' (',F6.2,'%)')
      return
      end



!---------------------------------------------------------------------
!---------------------------------------------------------------------

      subroutine fft(dir, x1, x2)

!---------------------------------------------------------------------
!---------------------------------------------------------------------

      use ft_data
      implicit none

      integer dir
      double complex x1(ntotalp), x2(ntotalp)

      double complex y1(fftblockpad_default*maxdim),  &
     &               y2(fftblockpad_default*maxdim)

!---------------------------------------------------------------------
! note: args x1, x2 must be different arrays
! note: args for cfftsx are (direction, layout, xin, xout, scratch)
!       xin/xout may be the same and it can be somewhat faster
!       if they are
!---------------------------------------------------------------------

      if (dir .eq. 1) then
         call cffts1(1, dims(1), dims(2), dims(3), x1, x1, y1, y2)
         call cffts2(1, dims(1), dims(2), dims(3), x1, x1, y1, y2)
         call cffts3(1, dims(1), dims(2), dims(3), x1, x2, y1, y2)
      else
         call cffts3(-1, dims(1), dims(2), dims(3), x1, x1, y1, y2)
         call cffts2(-1, dims(1), dims(2), dims(3), x1, x1, y1, y2)
         call cffts1(-1, dims(1), dims(2), dims(3), x1, x2, y1, y2)
      endif
      return
      end



!---------------------------------------------------------------------
!---------------------------------------------------------------------

      subroutine cffts1(is, d1, d2, d3, x, xout, y1, y2)

!---------------------------------------------------------------------
!---------------------------------------------------------------------

      use ft_data
      implicit none

      integer is, d1, d2, d3, logd1
      double complex x(d1+1,d2,d3)
      double complex xout(d1+1,d2,d3)
      double complex y1(fftblockpad, d1), y2(fftblockpad, d1)
      integer i, j, k, jj, jn

      logd1 = ilog2(d1)

      if (timers_enabled) call timer_start(T_fftx)
!$omp parallel do default(shared) private(i,j,k,jj,y1,y2,jn)  &
!$omp&  shared(is,logd1,d1) collapse(2)
      do k = 1, d3
         do jn = 0, d2/fftblock - 1
!         do jj = 0, d2 - fftblock, fftblock
            jj = jn*fftblock
            do j = 1, fftblock
               do i = 1, d1
                  y1(j,i) = x(i,j+jj,k)
               enddo
            enddo
            
            call cfftz (is, logd1, d1, y1, y2)


            do j = 1, fftblock
               do i = 1, d1
                  xout(i,j+jj,k) = y1(j,i)
               enddo
            enddo
         enddo
      enddo
      if (timers_enabled) call timer_stop(T_fftx)

      return
      end


!---------------------------------------------------------------------
!---------------------------------------------------------------------

      subroutine cffts2(is, d1, d2, d3, x, xout, y1, y2)

!---------------------------------------------------------------------
!---------------------------------------------------------------------

      use ft_data
      implicit none

      integer is, d1, d2, d3, logd2
      double complex x(d1+1,d2,d3)
      double complex xout(d1+1,d2,d3)
      double complex y1(fftblockpad, d2), y2(fftblockpad, d2)
      integer i, j, k, ii, in

      logd2 = ilog2(d2)

      if (timers_enabled) call timer_start(T_ffty)
!$omp parallel do default(shared) private(i,j,k,ii,y1,y2,in)  &
!$omp&  shared(is,logd2,d2) collapse(2)
      do k = 1, d3
        do in = 0, d1/fftblock - 1
!        do ii = 0, d1 - fftblock, fftblock
           ii = in*fftblock
           do j = 1, d2
              do i = 1, fftblock
                 y1(i,j) = x(i+ii,j,k)
              enddo
           enddo

           call cfftz (is, logd2, d2, y1, y2)
           
           do j = 1, d2
              do i = 1, fftblock
                 xout(i+ii,j,k) = y1(i,j)
              enddo
           enddo
        enddo
      enddo
      if (timers_enabled) call timer_stop(T_ffty)

      return
      end


!---------------------------------------------------------------------
!---------------------------------------------------------------------

      subroutine cffts3(is, d1, d2, d3, x, xout, y1, y2)

!---------------------------------------------------------------------
!---------------------------------------------------------------------

      use ft_data
      implicit none

      integer is, d1, d2, d3, logd3
      double complex x(d1+1,d2,d3)
      double complex xout(d1+1,d2,d3)
      double complex y1(fftblockpad, d3), y2(fftblockpad, d3)
      integer i, j, k, ii, in

      logd3 = ilog2(d3)

      if (timers_enabled) call timer_start(T_fftz)
!$omp parallel do default(shared) private(i,j,k,ii,y1,y2,in)  &
!$omp&  shared(is) collapse(2)
      do j = 1, d2
        do in = 0, d1/fftblock - 1
!        do ii = 0, d1 - fftblock, fftblock
           ii = in*fftblock
           do k = 1, d3
              do i = 1, fftblock
                 y1(i,k) = x(i+ii,j,k)
              enddo
           enddo

           call cfftz (is, logd3, d3, y1, y2)

           do k = 1, d3
              do i = 1, fftblock
                 xout(i+ii,j,k) = y1(i,k)
              enddo
           enddo
        enddo
      enddo
      if (timers_enabled) call timer_stop(T_fftz)

      return
      end


!---------------------------------------------------------------------
!---------------------------------------------------------------------

      subroutine fft_init (n)

!---------------------------------------------------------------------
!---------------------------------------------------------------------

!---------------------------------------------------------------------
! compute the roots-of-unity array that will be used for subsequent FFTs. 
!---------------------------------------------------------------------

      use ft_data
      implicit none

      integer m,n,nu,ku,i,j,ln
      double precision t, ti


!---------------------------------------------------------------------
!   Initialize the U array with sines and cosines in a manner that permits
!   stride one access at each FFT iteration.
!---------------------------------------------------------------------
      nu = n
      m = ilog2(n)
      u(1) = m
      ku = 2
      ln = 1

      do j = 1, m
         t = pi / ln
         
         do i = 0, ln - 1
            ti = i * t
            u(i+ku) = dcmplx (cos (ti), sin(ti))
         enddo
         
         ku = ku + ln
         ln = 2 * ln
      enddo
      
      return
      end

!---------------------------------------------------------------------
!---------------------------------------------------------------------

      subroutine cfftz (is, m, n, x, y)

!---------------------------------------------------------------------
!---------------------------------------------------------------------

!---------------------------------------------------------------------
!   Computes NY N-point complex-to-complex FFTs of X using an algorithm due
!   to Swarztrauber.  X is both the input and the output array, while Y is a 
!   scratch array.  It is assumed that N = 2^M.  Before calling CFFTZ to 
!   perform FFTs, the array U must be initialized by calling CFFTZ with IS 
!   set to 0 and M set to MX, where MX is the maximum value of M for any 
!   subsequent call.
!---------------------------------------------------------------------

      use ft_data
      implicit none

      integer is,m,n,i,j,l,mx
      double complex x, y

      dimension x(fftblockpad,n), y(fftblockpad,n)

!---------------------------------------------------------------------
!   Check if input parameters are invalid.
!---------------------------------------------------------------------
      mx = u(1)
      if ((is .ne. 1 .and. is .ne. -1) .or. m .lt. 1 .or. m .gt. mx)    &
     &  then
        write (*, 1)  is, m, mx
 1      format ('CFFTZ: Either U has not been initialized, or else'/    &
     &    'one of the input parameters is invalid', 3I5)
        stop
      endif

!---------------------------------------------------------------------
!   Perform one variant of the Stockham FFT.
!---------------------------------------------------------------------
      do l = 1, m, 2
        call fftz2 (is, l, m, n, fftblock, fftblockpad, u, x, y)
        if (l .eq. m) goto 160
        call fftz2 (is, l + 1, m, n, fftblock, fftblockpad, u, y, x)
      enddo

      goto 180

!---------------------------------------------------------------------
!   Copy Y to X.
!---------------------------------------------------------------------
 160  do j = 1, n
        do i = 1, fftblock
          x(i,j) = y(i,j)
        enddo
      enddo

 180  continue

      return
      end

!---------------------------------------------------------------------
!---------------------------------------------------------------------

      subroutine fftz2 (is, l, m, n, ny, ny1, u, x, y)

!---------------------------------------------------------------------
!---------------------------------------------------------------------

!---------------------------------------------------------------------
!   Performs the L-th iteration of the second variant of the Stockham FFT.
!---------------------------------------------------------------------

      implicit none

      integer is,k,l,m,n,ny,ny1,n1,li,lj,lk,ku,i,j,i11,i12,i21,i22
      double complex u,x,y,u1,x11,x21
      dimension u(n), x(ny1,n), y(ny1,n)


!---------------------------------------------------------------------
!   Set initial parameters.
!---------------------------------------------------------------------

      n1 = n / 2
      lk = 2 ** (l - 1)
      li = 2 ** (m - l)
      lj = 2 * lk
      ku = li + 1

      do i = 0, li - 1
        i11 = i * lk + 1
        i12 = i11 + n1
        i21 = i * lj + 1
        i22 = i21 + lk
        if (is .ge. 1) then
          u1 = u(ku+i)
        else
          u1 = dconjg (u(ku+i))
        endif

!---------------------------------------------------------------------
!   This loop is vectorizable.
!---------------------------------------------------------------------
        do k = 0, lk - 1
          do j = 1, ny
            x11 = x(j,i11+k)
            x21 = x(j,i12+k)
            y(j,i21+k) = x11 + x21
            y(j,i22+k) = u1 * (x11 - x21)
          enddo
        enddo
      enddo

      return
      end

!---------------------------------------------------------------------


!---------------------------------------------------------------------
!---------------------------------------------------------------------

      integer function ilog2(n)

!---------------------------------------------------------------------
!---------------------------------------------------------------------

      implicit none
      integer n, nn, lg
      if (n .eq. 1) then
         ilog2=0
         return
      endif
      lg = 1
      nn = 2
      do while (nn .lt. n)
         nn = nn*2
         lg = lg+1
      end do
      ilog2 = lg
      return
      end


!---------------------------------------------------------------------
!---------------------------------------------------------------------

      subroutine checksum(i, u1, d1, d2, d3)

!---------------------------------------------------------------------
!---------------------------------------------------------------------

      use ft_data
      implicit none

      integer i, d1, d2, d3
      double complex u1(d1+1,d2,d3)
      integer j, q,r,s
      double complex chk
      chk = (0.0,0.0)

!$omp parallel do default(shared) private(i,q,r,s) reduction(+:chk)
      do j=1,1024
         q = mod(j, nx)+1
         r = mod(3*j,ny)+1
         s = mod(5*j,nz)+1
         chk=chk+u1(q,r,s)
      end do

      chk = chk/ntotal_f
      
      write (*, 30) i, chk
 30   format (' T =',I5,5X,'Checksum =',1P2D22.12)
      sums(i) = chk
      return
      end


!---------------------------------------------------------------------
!---------------------------------------------------------------------

      subroutine verify (d1, d2, d3, nt, verified, class)

!---------------------------------------------------------------------
!---------------------------------------------------------------------

      use, intrinsic :: ieee_arithmetic, only : ieee_is_nan

      use ft_data

      implicit none

      integer d1, d2, d3, nt
      character class
      logical verified
      integer i
      double precision err, epsilon

!---------------------------------------------------------------------
!   Reference checksums
!---------------------------------------------------------------------
      double complex csum_ref(25)


      class = 'U'

      epsilon = 1.0d-12
      verified = .FALSE.

      if (d1 .eq. 64 .and.  &
     &    d2 .eq. 64 .and.  &
     &    d3 .eq. 64 .and.  &
     &    nt .eq. 6) then
!---------------------------------------------------------------------
!   Sample size reference checksums
!---------------------------------------------------------------------
         class = 'S'
         csum_ref(1) = dcmplx(5.546087004964D+02, 4.845363331978D+02)
         csum_ref(2) = dcmplx(5.546385409189D+02, 4.865304269511D+02)
         csum_ref(3) = dcmplx(5.546148406171D+02, 4.883910722336D+02)
         csum_ref(4) = dcmplx(5.545423607415D+02, 4.901273169046D+02)
         csum_ref(5) = dcmplx(5.544255039624D+02, 4.917475857993D+02)
         csum_ref(6) = dcmplx(5.542683411902D+02, 4.932597244941D+02)

      else if (d1 .eq. 128 .and.  &
     &    d2 .eq. 128 .and.  &
     &    d3 .eq. 32 .and.  &
     &    nt .eq. 6) then
!---------------------------------------------------------------------
!   Class W size reference checksums
!---------------------------------------------------------------------
         class = 'W'
         csum_ref(1) = dcmplx(5.673612178944D+02, 5.293246849175D+02)
         csum_ref(2) = dcmplx(5.631436885271D+02, 5.282149986629D+02)
         csum_ref(3) = dcmplx(5.594024089970D+02, 5.270996558037D+02)
         csum_ref(4) = dcmplx(5.560698047020D+02, 5.260027904925D+02)
         csum_ref(5) = dcmplx(5.530898991250D+02, 5.249400845633D+02)
         csum_ref(6) = dcmplx(5.504159734538D+02, 5.239212247086D+02)

      else if (d1 .eq. 256 .and.  &
     &    d2 .eq. 256 .and.  &
     &    d3 .eq. 128 .and.  &
     &    nt .eq. 6) then
!---------------------------------------------------------------------
!   Class A size reference checksums
!---------------------------------------------------------------------
         class = 'A'
         csum_ref(1) = dcmplx(5.046735008193D+02, 5.114047905510D+02)
         csum_ref(2) = dcmplx(5.059412319734D+02, 5.098809666433D+02)
         csum_ref(3) = dcmplx(5.069376896287D+02, 5.098144042213D+02)
         csum_ref(4) = dcmplx(5.077892868474D+02, 5.101336130759D+02)
         csum_ref(5) = dcmplx(5.085233095391D+02, 5.104914655194D+02)
         csum_ref(6) = dcmplx(5.091487099959D+02, 5.107917842803D+02)
      
      else if (d1 .eq. 512 .and.  &
     &    d2 .eq. 256 .and.  &
     &    d3 .eq. 256 .and.  &
     &    nt .eq. 20) then
!---------------------------------------------------------------------
!   Class B size reference checksums
!---------------------------------------------------------------------
         class = 'B'
         csum_ref(1)  = dcmplx(5.177643571579D+02, 5.077803458597D+02)
         csum_ref(2)  = dcmplx(5.154521291263D+02, 5.088249431599D+02)
         csum_ref(3)  = dcmplx(5.146409228649D+02, 5.096208912659D+02)
         csum_ref(4)  = dcmplx(5.142378756213D+02, 5.101023387619D+02)
         csum_ref(5)  = dcmplx(5.139626667737D+02, 5.103976610617D+02)
         csum_ref(6)  = dcmplx(5.137423460082D+02, 5.105948019802D+02)
         csum_ref(7)  = dcmplx(5.135547056878D+02, 5.107404165783D+02)
         csum_ref(8)  = dcmplx(5.133910925466D+02, 5.108576573661D+02)
         csum_ref(9)  = dcmplx(5.132470705390D+02, 5.109577278523D+02)
         csum_ref(10) = dcmplx(5.131197729984D+02, 5.110460304483D+02)
         csum_ref(11) = dcmplx(5.130070319283D+02, 5.111252433800D+02)
         csum_ref(12) = dcmplx(5.129070537032D+02, 5.111968077718D+02)
         csum_ref(13) = dcmplx(5.128182883502D+02, 5.112616233064D+02)
         csum_ref(14) = dcmplx(5.127393733383D+02, 5.113203605551D+02)
         csum_ref(15) = dcmplx(5.126691062020D+02, 5.113735928093D+02)
         csum_ref(16) = dcmplx(5.126064276004D+02, 5.114218460548D+02)
         csum_ref(17) = dcmplx(5.125504076570D+02, 5.114656139760D+02)
         csum_ref(18) = dcmplx(5.125002331720D+02, 5.115053595966D+02)
         csum_ref(19) = dcmplx(5.124551951846D+02, 5.115415130407D+02)
         csum_ref(20) = dcmplx(5.124146770029D+02, 5.115744692211D+02)

      else if (d1 .eq. 512 .and.  &
     &    d2 .eq. 512 .and.  &
     &    d3 .eq. 512 .and.  &
     &    nt .eq. 20) then
!---------------------------------------------------------------------
!   Class C size reference checksums
!---------------------------------------------------------------------
         class = 'C'
         csum_ref(1)  = dcmplx(5.195078707457D+02, 5.149019699238D+02)
         csum_ref(2)  = dcmplx(5.155422171134D+02, 5.127578201997D+02)
         csum_ref(3)  = dcmplx(5.144678022222D+02, 5.122251847514D+02)
         csum_ref(4)  = dcmplx(5.140150594328D+02, 5.121090289018D+02)
         csum_ref(5)  = dcmplx(5.137550426810D+02, 5.121143685824D+02)
         csum_ref(6)  = dcmplx(5.135811056728D+02, 5.121496764568D+02)
         csum_ref(7)  = dcmplx(5.134569343165D+02, 5.121870921893D+02)
         csum_ref(8)  = dcmplx(5.133651975661D+02, 5.122193250322D+02)
         csum_ref(9)  = dcmplx(5.132955192805D+02, 5.122454735794D+02)
         csum_ref(10) = dcmplx(5.132410471738D+02, 5.122663649603D+02)
         csum_ref(11) = dcmplx(5.131971141679D+02, 5.122830879827D+02)
         csum_ref(12) = dcmplx(5.131605205716D+02, 5.122965869718D+02)
         csum_ref(13) = dcmplx(5.131290734194D+02, 5.123075927445D+02)
         csum_ref(14) = dcmplx(5.131012720314D+02, 5.123166486553D+02)
         csum_ref(15) = dcmplx(5.130760908195D+02, 5.123241541685D+02)
         csum_ref(16) = dcmplx(5.130528295923D+02, 5.123304037599D+02)
         csum_ref(17) = dcmplx(5.130310107773D+02, 5.123356167976D+02)
         csum_ref(18) = dcmplx(5.130103090133D+02, 5.123399592211D+02)
         csum_ref(19) = dcmplx(5.129905029333D+02, 5.123435588985D+02)
         csum_ref(20) = dcmplx(5.129714421109D+02, 5.123465164008D+02)