Skip to content
Snippets Groups Projects
ft.cpp 15.4 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
#include <fmt/core.h>

#include <complex>
#include <omp.h>
#include <unsupported/Eigen/CXX11/Tensor>

using namespace std::complex_literals;

class FFT {
public:
	// CLASS = C
	constexpr static int NX = 512;
	constexpr static int NY = 512;
	constexpr static int NZ = 512;
	constexpr static int MAXDIM = 512;
	constexpr static int NITER_DEFAULT = 20;

	// total number of grid points with padding
	constexpr static int NXP = NX + 1;
	constexpr static int NTOTALP = NXP * NY * NZ;
	constexpr static double NTOTAL_F = (double)NX * NY * NZ;

	// If processor array is 1x1 -> 0D grid decomposition

	// Cache blocking params. These values are good for most RISC processors.
	// FFT parameters:
	//   fftblock controls how many ffts are done at a time.
	//   The default is appropriate for most cache-based machines
	//   On vector machines, the FFT can be vectorized with vector
	//   length equal to the block size, so the block size should
	//   be as large as possible. This is the size of the smallest
	//   dimension of the problem: 128 for class A, 256 for class B and
	//   512 for class C.

	constexpr static int FFTBLOCK_DEFAULT = 32;
	constexpr static int FFTBLOCKPAD_DEFAULT = FFTBLOCK_DEFAULT + 2;

	// other stuff
	constexpr static int SEED = 314159265;
	constexpr static double ALPHA = 1E-6;

private:
	bool m_debug;

	int m_niter;
	int m_fftblock;
	int m_fftblockpad;

	Eigen::Tensor<std::complex<double>, 1> m_u {NXP};
	Eigen::Tensor<std::complex<double>, 3> m_u0 {NXP, NY, NZ};
	Eigen::Tensor<std::complex<double>, 3> m_u1 {NXP, NY, NZ};
	Eigen::Tensor<double, 3> m_twiddle {NXP, NY, NZ};

public:
	FFT()
	{
		m_debug = false;
		m_niter = NITER_DEFAULT;

		fmt::println("");
		fmt::println("");
		fmt::println(" NAS Parallel Benchmarks (NPB3.4-OMP) - FT Benchmark");
		fmt::println("");
		fmt::println(" Size                        : {}x{}x{}", NX, NY, NZ);
		fmt::println(" Iterations                  : {}", m_niter);
		fmt::println(" Number of available threads : {}", omp_get_max_threads());
		fmt::println("");

		// ---------------------------------------------------------------------
		// Set up info for blocking of ffts and transposes.  This improves
		// performance on cache-based systems. Blocking involves
		// working on a chunk of the problem at a time, taking chunks
		// along the first, second, or third dimension.
		//
		// - In cffts1 blocking is on 2nd dimension (with fft on 1st dim)
		// - In cffts2/3 blocking is on 1st dimension (with fft on 2nd and 3rd dims)
		//
		// Since 1st dim is always in processor, we'll assume it's long enough
		// (default blocking factor is 16 so min size for 1st dim is 16)
		// The only case we have to worry about is cffts1 in a 2d decomposition.
		// so the blocking factor should not be larger than the 2nd dimension.
		// ---------------------------------------------------------------------

		m_fftblock = FFTBLOCK_DEFAULT;
		m_fftblockpad = FFTBLOCKPAD_DEFAULT;

		if (m_fftblock != FFTBLOCK_DEFAULT)
			m_fftblockpad = m_fftblock + 3;

		this->init_ui();
	}

	void run()
	{
		// ---------------------------------------------------------------------
		// Run the entire problem once to make sure all data is touched.
		// This reduces variable startup costs, which is important for such a
		// short benchmark. The other NPB 2 implementations are similar.
		// ---------------------------------------------------------------------
		this->compute_indexmap();
		this->compute_initial_conditions();
		this->fft_init();
		this->fft(1, m_u1, m_u0);

		// ---------------------------------------------------------------------
		// Start over from the beginning. Note that all operations must
		// be timed, in contrast to other benchmarks.
		// ---------------------------------------------------------------------
		this->compute_indexmap();
		this->compute_initial_conditions();
		this->fft_init();
		this->fft(1, m_u1, m_u0);

		for (int iter = 1; iter <= m_niter; iter++) {
			this->evolve();
			this->fft(-1, m_u1, m_u1);
			this->checksum(iter);
		}
	}

private:
	void init_ui()
	{
		// ---------------------------------------------------------------------
		//  touch all the big data
		// ---------------------------------------------------------------------

		const Eigen::Index d1 = m_twiddle.dimension(0) - 1;
		const Eigen::Index d2 = m_twiddle.dimension(1);
		const Eigen::Index d3 = m_twiddle.dimension(2);

		#pragma omp parallel for collapse(2)
		for (int k = 0; k < d3; k++) {
			for (int j = 0; j < d2; j++) {
				for (int i = 0; i < d1; i++) {
					m_u0(i, j, k) = 0.0 + 0i;
					m_u1(i, j, k) = 0.0 + 0i;
					m_twiddle(i, j, k) = 0;
				}
			}
		}
	}

	// ---------------------------------------------------------------------
	//  compute function from local (i,j,k) to ibar^2+jbar^2+kbar^2
	//  for time evolution exponent.
	// ---------------------------------------------------------------------
	void compute_indexmap()
	{
		constexpr double AP = -4 * ALPHA * M_PI * M_PI;

		// ---------------------------------------------------------------------
		// basically we want to convert the fortran indices
		//   1 2 3 4 5 6 7 8
		// to
		//   0 1 2 3 -4 -3 -2 -1
		// The following magic formula does the trick:
		// mod(i-1+n/2, n) - n/2
		// ---------------------------------------------------------------------

		const Eigen::Index d1 = m_twiddle.dimension(0) - 1;
		const Eigen::Index d2 = m_twiddle.dimension(1);
		const Eigen::Index d3 = m_twiddle.dimension(2);

		#pragma omp parallel for collapse(2)
		for (Eigen::Index k = 0; k < d3; k++) {
			for (Eigen::Index j = 0; j < d2; j++) {
				const Eigen::Index kk = (k + d3 / 2) % d3 - d3 / 2;
				const Eigen::Index kk2 = kk * kk;

				const Eigen::Index jj = (j + d2 / 2) % d2 - d2 / 2;
				const Eigen::Index kj2 = jj * jj + kk2;

				for (Eigen::Index i = 0; i < d1; i++) {
					const int ii = (i + d1 / 2) % d1 - d1 / 2;
					m_twiddle(i, j, k) = exp(AP * (ii * ii + kj2));
				}
			}
		}
	}

	void compute_initial_conditions()
	{
		srand48(SEED);

		const Eigen::Index d1 = m_u1.dimension(0);
		const Eigen::Index d2 = m_u1.dimension(1);
		const Eigen::Index d3 = m_u1.dimension(2);

		for (int k = 0; k < d3; k++) {
			for (int j = 0; j < d2; j++) {
				for (int i = 0; i < d1; i++)
					m_u1(i, j, k) = drand48();
			}
		}
	}

	void evolve()
	{
		// ---------------------------------------------------------------------
		//  evolve u0 -> u1 (t time steps) in fourier space
		// ---------------------------------------------------------------------

		const Eigen::Index d1 = m_u1.dimension(0) - 1;
		const Eigen::Index d2 = m_u1.dimension(1);
		const Eigen::Index d3 = m_u1.dimension(2);

		#pragma omp parallel for collapse(2)
		for (Eigen::Index k = 0; k < d3; k++) {
			for (Eigen::Index j = 0; j < d2; j++) {
				for (Eigen::Index i = 0; i < d1; i++) {
					m_u0(i, j, k) *= m_twiddle(i, j, k);
					m_u1(i, j, k) = m_u0(i, j, k);
				}
			}
		}
	}

	// ---------------------------------------------------------------------
	//  compute the roots-of-unity array that will be used for subsequent FFTs.
	// ---------------------------------------------------------------------
	void fft_init()
	{
		// ---------------------------------------------------------------------
		//   Initialize the U array with sines and cosines in a manner that permits
		//   stride one access at each FFT iteration.
		// ---------------------------------------------------------------------

		const Eigen::Index m = ilog2(m_u.dimension(0) - 1);
		m_u(0) = m;

		Eigen::Index ku = 1;
		Eigen::Index ln = 1;

		for (Eigen::Index j = 0; j < m; j++) {
			const double t = M_PI / ln;

			for (Eigen::Index i = 0; i < ln; i++) {
				const double ti = i * t;

				m_u(i + ku) = cos(ti) + 1i * sin(ti);
			}

			ku += ln;
			ln *= 2;
		}
	}

	void fft(const int dir,
	         Eigen::Tensor<std::complex<double>, 3> &x1,
	         Eigen::Tensor<std::complex<double>, 3> &x2)
	{
		Eigen::Tensor<std::complex<double>, 2> y1 {m_fftblockpad, MAXDIM};
		Eigen::Tensor<std::complex<double>, 2> y2 {m_fftblockpad, MAXDIM};

		// ---------------------------------------------------------------------
		//  note: args x1, x2 must be different arrays
		//  note: args for cfftsx are (direction, layout, xin, xout, scratch)
		//        xin/xout may be the same and it can be somewhat faster
		//        if they are
		// ---------------------------------------------------------------------

		if (dir == 1) {
			cffts1(1, x1, x1, y1, y2);
			cffts2(1, x1, x1, y1, y2);
			cffts3(1, x1, x2, y1, y2);
		} else {
			cffts3(-1, x1, x1, y1, y2);
			cffts2(-1, x1, x1, y1, y2);
			cffts1(-1, x1, x2, y1, y2);
		}
	}

	void cffts1(const int is,
	            const Eigen::Tensor<std::complex<double>, 3> &x,
	            Eigen::Tensor<std::complex<double>, 3> &xout,
	            Eigen::Tensor<std::complex<double>, 2> &y1,
	            Eigen::Tensor<std::complex<double>, 2> &y2)
	{
		const Eigen::Index d1 = x.dimension(0) - 1;
		const Eigen::Index d2 = x.dimension(1);
		const Eigen::Index d3 = x.dimension(2);

		const Eigen::Index logd1 = ilog2(d1);

		#pragma omp parallel for default(shared) firstprivate(y1, y2) collapse(2)
		for (Eigen::Index k = 0; k < d3; k++) {
			for (Eigen::Index jn = 0; jn < d2 / m_fftblock; jn++) {
				const Eigen::Index jj = jn * m_fftblock;

				for (Eigen::Index j = 0; j < m_fftblock; j++) {
					for (Eigen::Index i = 0; i < d1; i++) {
						y1(j, i) = x(i, j + jj, k);
					}
				}

				cfftz(is, logd1, d1, y1, y2);

				for (Eigen::Index j = 0; j < m_fftblock; j++) {
					for (Eigen::Index i = 0; i < d1; i++) {
						xout(i, j + jj, k) = y1(j, i);
					}
				}
			}
		}
	}

	void cffts2(const int is,
	            const Eigen::Tensor<std::complex<double>, 3> &x,
	            Eigen::Tensor<std::complex<double>, 3> &xout,
	            Eigen::Tensor<std::complex<double>, 2> &y1,
	            Eigen::Tensor<std::complex<double>, 2> &y2)
	{
		const Eigen::Index d1 = x.dimension(0) - 1;
		const Eigen::Index d2 = x.dimension(1);
		const Eigen::Index d3 = x.dimension(2);

		const Eigen::Index logd1 = ilog2(d2);

		#pragma omp parallel for default(shared) firstprivate(y1, y2) collapse(2)
		for (Eigen::Index k = 0; k < d3; k++) {
			for (Eigen::Index in = 0; in < d1 / m_fftblock; in++) {
				const Eigen::Index ii = in * m_fftblock;

				for (Eigen::Index j = 0; j < d2; j++) {
					for (Eigen::Index i = 0; i < m_fftblock; i++) {
						y1(i, j) = x(i + ii, j, k);
					}
				}

				cfftz(is, logd1, d1, y1, y2);

				for (Eigen::Index j = 0; j < d2; j++) {
					for (Eigen::Index i = 0; i < m_fftblock; i++) {
						xout(i + ii, j, k) = y1(i, j);
					}
				}
			}
		}
	}

	void cffts3(const int is,
	            const Eigen::Tensor<std::complex<double>, 3> &x,
	            Eigen::Tensor<std::complex<double>, 3> &xout,
	            Eigen::Tensor<std::complex<double>, 2> &y1,
	            Eigen::Tensor<std::complex<double>, 2> &y2)
	{
		const Eigen::Index d1 = x.dimension(0) - 1;
		const Eigen::Index d2 = x.dimension(1);
		const Eigen::Index d3 = x.dimension(2);

		const Eigen::Index logd1 = ilog2(d3);

		#pragma omp parallel for default(shared) firstprivate(y1, y2) collapse(2)
		for (Eigen::Index j = 0; j < d2; j++) {
			for (Eigen::Index in = 0; in < d1 / m_fftblock; in++) {
				const Eigen::Index ii = in * m_fftblock;

				for (Eigen::Index k = 0; k < d3; k++) {
					for (Eigen::Index i = 0; i < m_fftblock; i++) {
						y1(i, k) = x(i + ii, j, k);
					}
				}

				cfftz(is, logd1, d1, y1, y2);

				for (Eigen::Index k = 0; k < d3; k++) {
					for (Eigen::Index i = 0; i < m_fftblock; i++) {
						xout(i + ii, j, k) = y1(i, k);
					}
				}
			}
		}
	}

	void cfftz(const int is,
	           const Eigen::Index m,
	           const Eigen::Index n,
	           Eigen::Tensor<std::complex<double>, 2> &x,
	           Eigen::Tensor<std::complex<double>, 2> &y)
	{
		// ---------------------------------------------------------------------
		//    Computes NY N-point complex-to-complex FFTs of X using an algorithm due
		//    to Swarztrauber.  X is both the input and the output array, while Y is a
		//    scratch array.  It is assumed that N = 2^M.  Before calling CFFTZ to
		//    perform FFTs, the array U must be initialized by calling CFFTZ with IS
		//    set to 0 and M set to MX, where MX is the maximum value of M for any
		//    subsequent call.
		// ---------------------------------------------------------------------

		// ---------------------------------------------------------------------
		//    Check if input parameters are invalid.
		// ---------------------------------------------------------------------

		const int mx = m_u(0).real();

		if ((is != 1 && is != -1) || m < 1 || m > mx) {
			// clang-format off
			throw std::runtime_error {
				fmt::format("CFFTZ: Either U has not been initialized, or else one "
			                    "of the input parameters is invalid {} {} {}", is, m, mx)};
			// clang-format on
		}

		// ---------------------------------------------------------------------
		//    Perform one variant of the Stockham FFT.
		// ---------------------------------------------------------------------

		for (Eigen::Index l = 1; l <= m; l += 2) {
			fftz2(is, l, m, n, m_fftblock, x, y);

			if (l == m) {
				// ---------------------------------------------------------------------
				//   Copy Y to X.
				// ---------------------------------------------------------------------

				for (Eigen::Index j = 0; j < n; j++) {
					for (Eigen::Index i = 0; i < m_fftblock; i++)
						x(i, j) = y(i, j);
				}

				continue;
			}

			fftz2(is, l + 1, m, n, m_fftblock, y, x);
		}
	}

	void fftz2(const int is,
	           const Eigen::Index l,
	           const Eigen::Index m,
	           const Eigen::Index n,
	           const Eigen::Index ny,
	           Eigen::Tensor<std::complex<double>, 2> &x,
	           Eigen::Tensor<std::complex<double>, 2> &y)
	{
		// ---------------------------------------------------------------------
		//    Performs the L-th iteration of the second variant of the Stockham FFT.
		// --------------------------------------------------------------------

		const Eigen::Index n1 = n / 2;
		const Eigen::Index lk = 1 << (l - 1);
		const Eigen::Index li = 1 << (m - l);
		const Eigen::Index lj = 2 * lk;

		for (Eigen::Index i = 0; i < li; i++) {
			const Eigen::Index i11 = i * lk;
			const Eigen::Index i12 = i11 + n1;
			const Eigen::Index i21 = i * lj;
			const Eigen::Index i22 = i21 + lk;

			std::complex<double> u1;

			if (is >= 1)
				u1 = m_u(li + i);
			else
				u1 = conj(m_u(li + i));

			// ---------------------------------------------------------------------
			//    This loop is vectorizable.
			// ---------------------------------------------------------------------
			for (Eigen::Index k = 0; k < lk; k++) {
				for (Eigen::Index j = 0; j < ny; j++) {
					const std::complex<double> x11 = x(j, i11 + k);
					const std::complex<double> x21 = x(j, i12 + k);

					y(j, i21 + k) = x11 + x21;
					y(j, i22 + k) = u1 * (x11 - x21);
				}
			}
		}
	}

	template <class T>
	T ilog2(const T n) const
	{
		if (n == 1)
			return 0;

		T lg = 1;
		T nn = 2;

		while (nn < n) {
			nn *= 2;
			lg += 1;
		}

		return lg;
	}

	void checksum(const int i) const
	{
		std::complex<double> chk {0, 0};

		#pragma omp parallel
		{
			std::complex<double> local = 0;

			#pragma omp for
			for (Eigen::Index j = 1; j <= 1024; j++) {
				const Eigen::Index q = j % NX;
				const Eigen::Index r = (3 * j) % NY;
				const Eigen::Index s = (5 * j) % NZ;

				local += m_u1(q, r, s);
			}

			#pragma omp critical
			{
				chk += local;
			}
		}

		chk /= NTOTAL_F;

		fmt::println(" T = {}     Checksum = {:.10E} {:.10E}", i, chk.real(), chk.imag());
	}
};

int main(void)
{
	FFT {}.run();
}