%-------------------------------------------------------------------------- % PREPARE GRIDS %-------------------------------------------------------------------------- % % addpath('.\mfiles') % ALT (elevation model) clear dem=GRIDobj('./Topo/cop30DEM_utm32n_subset_carved.tif'); % RAIN (sources (>0) and sinks (-1)) rain = GRIDobj('.\Topo\map_wc2.tif'); % MAP after WorldClim2 (mm/yr) rain = resample(rain,dem); rain = rain/1000; % convert to m/yr rain = rain/3600/24/365.25/dem.cellsize.^2; % convert to m^3/s % INFLOWS inflow_rhine = 1113; % (m^3/s) inflow_rhine_y = [63:68]; % y-location (column) of inlet inflow_rhine_x = ones(6,1)'*286; % x-location (row) of inlet inflow_rhine = inflow_rhine/length(inflow_rhine_x)/dem.cellsize.^2; % divide by number of inflow cells and by cellsize^2 rain.Z(inflow_rhine_y,inflow_rhine_x(1)) = ones(length(inflow_rhine_x),1)*inflow_rhine; rain.Z(1:end,1)=-1; rain.Z(1,1:end)=-1; rain.Z(end,1:end)=-1; % INITIAL SEDIMENT CONCENTRATION cs = GRIDobj('./Topo/rhinesissle_cs_30m.tif'); cs.Z(cs.Z<0.1 & cs.Z>-1)=0; % WATER % water = GRIDobj('.\Topo\HochRhein_WATER+LAKE_1000m.tif'); % UPLIFT % uplift = GRIDobj('.\Topo\uplift_m_per_s_baselevel_Basel.tif'); uplift = GRIDobj('.\Topo\uplift_m_per_s_nagra_baselevel_Basel.tif'); uplift = resample(uplift,dem); % SED (sediment thickness in meters) sed = GRIDobj('.\Topo\mqu_140715g_utm32n_subset.tif'); % sed = dem*0; % sed.Z(~isnan(sed.Z))=10; LEM.dem = dem; LEM.rain = rain; LEM.sed = sed; LEM.uplift = uplift; % LEM.water = water; LEM.cs = cs; GRIDobj2grd(dem,['./Topo/',dem.name,'.alt']); GRIDobj2grd(rain,['./Topo/',dem.name,'.rain']); GRIDobj2grd(sed,['./Topo/',dem.name,'.sed']); GRIDobj2grd(uplift,['./Topo/',dem.name,'.uplift']); % GRIDobj2grd(water,['./Topo/',dem.name,'.water']); GRIDobj2grd(cs,['./Topo/',dem.name,'.cs']); %-------------------------------------------------------------------------- %% DEFINE INPUT PARAMETERS %-------------------------------------------------------------------------- LEM.experiment = 'rhinesissle_test'; % Project name LEM.ErosPath = 'D:\\USER\\mey'; % Path to .exe LEM.outfolder = 'rhinesissle_test\\rghs'; % folder to store results in % LEM.inflow = 1060; % [m3s-1]water inflow at source cells LEM.rainfall = 2; % Sets the precipitation rate per unit surface when multiplied by the rainfall map LEM.initial_sediment_stock = '0.01:dir'; % % The total "stock" of sediment at the precipiton landing is: input_sediment_concentration*cs_map[i]*Precipiton_volume LEM.inertia = 0; % refers to inertia term in shallow water equation LEM.begin = 0; LEM.begin_option = 'time'; % start time LEM.end = 90e5; LEM.end_option = 'time'; % length of model run LEM.draw = 3000; LEM.draw_option = 'time'; % output interval LEM.step = 0.1e2; LEM.step_option = 'volume'; LEM.stepmin = 0.1e1; LEM.stepmax = 1e4; LEM.initbegin = 1e+1; % initialization time (-) LEM.initend = 1e+1; LEM.initstep = 2; LEM.TU_coefficient = 1; % sets the proportion of rain pixels that make up 1 TU LEM.flow_model = 'stationary:pow'; LEM.erosion_multiply = 100; % multiplying factor for erosion rates. Equivalent to consider an "erosion time" larger than the hydrodynamic time LEM.uplift_multiplier = 700000; LEM.limiter = 1e-1; LEM.continue_run = -1; %-------------------------------------------------------------------------- % EROSION/DEPOSITION %-------------------------------------------------------------------------- LEM.erosion_model = 'MPM'; % (stream_power, shear_stress, shear_mpm) LEM.deposition_model = 'constant'; % need to know whether there are other options! LEM.eros_version = 'eros7.3.112'; LEM.stress_model = 'rghs'; % ALLUVIAL LEM.fluvial_stress_exponent = 1.5; % exponent in sediment flux eq. (MPM): qs = E(tau-tau_c)^a LEM.fluvial_erodability = 2.6e-8; % [kg-1.5 m-3.5 s-2] E in MPM equation LEM.fluvial_sediment_threshold = 0.05; % [Pa] critical shear stress (tau_c) in MPM equation LEM.deposition_length = 30; % [m] xi in vertical erosion term: edot = qs/xi % LATERAL EROSION/DEPOSITION LEM.fluvial_lateral_erosion_coefficient = 1e-4; % dimensionless coefficient (Eq. 17 in Davy, Croissant, Lague (2017)) LEM.fluvial_lateral_deposition_coefficient = 0.5; LEM.lateral_erosion_model = 1; LEM.lateral_deposition_model = 'constant'; % BEDROCK LEM.fluvial_basement_erodability = 0.1; LEM.fluvial_basement_threshold = 0.5; LEM.outbend_erosion_coefficient = 1.000000; LEM.inbend_erosion_coefficient = 1.00000; LEM.poisson_coefficient = 5; LEM.diffusion_coefficient = 4; LEM.sediment_grain = 0.0025; LEM.basement_grain = 0.025; %-------------------------------------------------------------------------- % FLOW MODEL %-------------------------------------------------------------------------- LEM.friction_model = 'manning'; LEM.friction_coefficient = 0.025; % LEM.flow_boundary = 'free'; %-------------------------------------------------------------------------- % OUTPUTS TO WRITE %-------------------------------------------------------------------------- LEM.stress = 1; LEM.waters = 1; LEM.discharge = 1; LEM.downward = 0; LEM.slope = 1; LEM.qs = 1; LEM.capacity = 1; LEM.sediment = 1; LEM.flux =1; LEM.stock =1; LEM.str_write = ''; LEM.str_nowrite = ''; writeErosInputs(LEM); %% run model system([LEM.experiment,'.bat'])