-
Jürgen Mey authored
Removed definitions of parameters in eros_template.m and writeErosInputs.m that are not to be changed. Added Instructions for using the Matlab-Eros interface.
Jürgen Mey authoredRemoved definitions of parameters in eros_template.m and writeErosInputs.m that are not to be changed. Added Instructions for using the Matlab-Eros interface.
eros_template.m 3.93 KiB
%--------------------------------------------------------------------------
% PREPARE GRIDS
%--------------------------------------------------------------------------
%
%+++++++++++++++++ Example data (1% inclined, flat surface) +++++++++++++++
% ALT (elevation model)
dem=GRIDobj('./Topo/channel_dx8_S0.01.tif');
% RAIN (sources (>0) and sinks (-1))
rain = dem*0;
rain.Z(:,1)=-1;
rain.Z(10:16,end)=1;
%SED (sediment thickness in meters)
sed = dem*0;
sed = sed+10;
LEM.dem = dem;
LEM.rain = rain;
LEM.sed = sed;
GRIDobj2grd(dem,['./Topo/',dem.name,'.alt']);
GRIDobj2grd(rain,['./Topo/',dem.name,'.rain']);
GRIDobj2grd(sed,['./Topo/',dem.name,'.sed']);
%+++++++++++++++++++++++++++ Real topography ++++++++++++++++++++++++++++++
% % ALT (elevation model)
% dem = GRIDobj(['./Topo/','hochrhein_crop.tif']);
%
% % RAIN (sources and sinks)
% rain = dem*0;
% rain.Z(104:114)=-1;
% rain.Z([16638 35718 35719 35720 35721])=1;
%
% % SED (sediment thickness)
% sed = dem*0;
% sed = sed+10;
% LEM.dem = dem;
% LEM.rain = rain;
% LEM.sed = sed;
% GRIDobj2grd(dem,['./Topo/',dem.name,'.alt']);
% GRIDobj2grd(rain,['./Topo/',dem.name,'.rain']);
% GRIDobj2grd(sed,['./Topo/',dem.name,'.sed']);
%--------------------------------------------------------------------------
%% DEFINE INPUT PARAMETERS
%--------------------------------------------------------------------------
LEM.experiment = 'singlethread'; % Project name
LEM.ErosPath = 'C:\\Projects\\EROS'; % Path to .exe
LEM.outfolder = 'Results'; % folder to store results in
LEM.inflow = 10; % [m3s-1]water inflow at source cells
LEM.initial_sediment_stock = 0.1; % [%] volumetric sediment inflow at source cells)
LEM.inertia = 0; % refers to inertia term in shallow water equation
LEM.start = 0; % start time
LEM.stop = 200000; % length of model run
LEM.draw = 2000; % output interval
LEM.init = 2000; % initialization time (-)
LEM.step = 0.3;
LEM.stepmin = 0.3;
LEM.stepmax = 0.3;
% LEM.i = 1.5e-3;
LEM.TU = 100; % unknown parameter
LEM.floodos = 'stationary:pow';
%--------------------------------------------------------------------------
% EROSION/DEPOSITION
%--------------------------------------------------------------------------
LEM.erosion_model = 'shear_stress'; % (stream_power, shear_stress, shear_mpm)
LEM.deposition_model = 'constant'; % need to know whether there are other options!
% ALLUVIAL
LEM.fluvial_stress_exponent = 1.5; % exponent in sediment flux eq. (MPM): qs = E(tau-tau_c)^a
LEM.fluvial_erodability = 0.0002; % [kg-1.5 m-3.5 s-2] E in MPM equation
LEM.fluvial_sediment_threshold = 4.0; % [Pa] critical shear stress (tau_c) in MPM equation
LEM.deposition_length = 2; % [m] xi in vertical erosion term: edot = qs/xi
% Lateral erosion/deposition
LEM.fluvial_lateral_erosion_coefficient = 0.05; % dimensionless coefficient (Eq. 17 in Davy, Croissant, Lague (2017))
LEM.fluvial_lateral_deposition_coefficient = 0.5;
% BEDROCK
LEM.fluvial_basement_erodability = 0.0002;
LEM.fluvial_basement_threshold = 4;
%--------------------------------------------------------------------------
% FLOW MODEL
%--------------------------------------------------------------------------
LEM.flood_model = 1;
LEM.flow_model = 'manning';
LEM.friction_coefficient = 0.025; %
LEM.flow_only = 0;
%--------------------------------------------------------------------------
% OUTPUTS TO WRITE
%--------------------------------------------------------------------------
LEM.stress = 1;
LEM.water = 1;
LEM.discharge = 1;
LEM.downward = 1;
LEM.slope = 1;
LEM.qs = 1;
LEM.capacity = 1;
LEM.sediment = 1;
LEM.rainfall = 0;
LEM.str_write = '';
LEM.str_nowrite = '';
writeErosInputs(LEM);
%% run model
system([LEM.experiment,'.bat'])