
Use-Based Reference Types for Borrow Checking
Jasper Gräflich

Agentur für Innovationen in der Cybersicherheit
Secure Systems

Halle (Saale), Germany
graeflich@cyberagentur.de

Potsdam University
Theoretical Computer Science

Potsdam, Germany
graeflich@uni-potsdam.de

Abstract
Borrowing systems like the one of Rust use various types
of references to prevent mutable aliasing. By forbidding the
creation of references that may violate the Aliasing XOR
Mutation (AXM) principle, memory corruption and data races
are prevented.

We present a more liberal approach that does not limit cre-
ation of references and instead utilizes compile-time proofs
to ensure that references are never used in a way that could
violate AXM.

Keywords: static analysis, borrowing, references, alias anal-
ysis

ACM Reference Format:
Jasper Gräflich. 2023. Use-Based Reference Types for Borrow Check-
ing. In Proceedings of ACM Conference (Conference’17). ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
The Aliasing XOR Mutation (AXM) principle stems from the
observation that data races can never happen, as long as

• if several references point to the same data (that is,
they alias), they all are read-only, and

• if a reference may mutate some data, no other refer-
ence may be around to observe this mutation.

In most programming languages, it is up to the program-
mer to validate the principle, but there are several approaches
enforcing it through the compiler:

• In Rust, reading and writing permissions are tied to a
reference at its creation and the compiler enforces that
no two live references with conflicting permissions
exist.

• Uniqueness types ensure that there is only one refer-
ence to some value and linear types ensure that no new
references may be created.

• As a variant on linear types, ATS has proof objects.
Proof objects are created together with a resource and

Conference’17, July 2017, Washington, DC, USA
2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM…$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

everytime the resource is used, a proof of permissions
must be supplied. This is called proof threading.

There are some limitations to these approaches. Because
Rusts borrow checker can’t always verify AXM, there is
the fallback mechanism of unsafe blocks in which the pro-
grammer can use raw, unchecked pointers but has to reason
without help from the compiler. Uniqueness and linear types
reject many correct programs. Proof threading à la ATS is a
large overhead and syntactically loud, as half or more of a
program’s source code may be proof threading annotations.

We propose an alternative approach to borrow checking
by introducing

• A region-based borrowing system using lightweight
proof objects (section 2),

• use-based permission tracking (section 3), and
• a formalization of these concepts in an extension to a

simple _-calculus (section 4).

2 Regions and Aliasing
We propose that the construction of provenance sets shall
only rely on the local context of a function 5 . There are three
ways of bringing a reference into context, each of which
comes with a different way to determine its region.

1. A borrow expression, &G , creates a new reference.
2. The reference is passed as one of the arguments of 5 .
3. Within 5 , another function 5 ′ is called that returns a

reference.

2.1 Provenance of Borrows
A borrow expression, &G , creates a reference A with a fresh
abstract location ? and a region and type inherited from G .
If G has type g and is at location ; , we write G : [;]g , and we
have that &G : &[A | ;]g .

2.2 Provenance of Function Arguments
If a reference is supplied as an argument to a function, its
provenance set is disjoint from all references created by
borrows or allocations within the function body. Since nei-
ther the concrete location for the reference nor its parent is
known, a fresh abstract location is created for the reference.

https://orcid.org/0009-0000-6965-1205
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Jasper Gräflich

If several references G1, . . . , G= are supplied as function
arguments, every reference is assigned a unique abstract
location ?1, . . . , ?= . However, when calling a function, sev-
eral of the supplied arguments can originate from the same
concrete location, as in

G = new(;, 4);
5 (&G,&G) (1)

Therefore, the provenance set of each reference G8 consists
of the locations of all arguments: G8 : [?8 | ?1, . . . , ?=]g . This
limits the use of the arguments within the function body
of 5 . To circumvent this, the provenance sets of arguments
can be reduced by introducing no alias proofs. A function
signature like

5 [G1 ↔ G1] (G1 : g, G2 : g) → g ′

ensures that G1 and G2 will never alias by preventing a call
like in 1. Within 5 , we then have G8 : [?8 | ?8] for 8 = 1, 2.

2.3 Provenance of Return Values
If a function returns a reference, it can be either an owning
reference to a new allocation, or it can be derived from one
or several of the inputs. By default, it must be assumed that
the provenance set of a returned reference is the union of all
provenance sets of input references. Proofs can reduce the
provenance set, similar to 2.2. For example, with the function
type

5 [G1 ↔ G2] (G1 : [A1]g, G2 : [A2]g) → &[A1]g
we can be sure that the value returned by a call to 5 will

share provenance with G1 but not with G2.

3 Permissions
To track the usage of references, each reference has an at-
tached permission for each point of execution that tracks the
operations necessary for evaluation. The possible permis-
sions are:

• An inactive reference, denoted &8 , is not dereferenced.
An inactive reference may be used in other ways, as
assigned or referenced in turn.

• A reference with read permission, denoted&A , is deref-
erenced (∗G), but not assigned to. It may also be as-
signed or referenced.

• A reference with write permission, denoted &F , is as-
signed to (G B 4). It may also be used in any way
references with inactive and read permissions may be
used.

3.1 Permissions in sequential code
In sequential code, reads only happen in ∗G expressionswhile
writes only happen in G B 4 expressions.

TODO: Function calls

Expressions 4 F G = new(;); 4 | G = 4; 4
| &G | ∗G | 4 (4)
| G B 4

Values G F fn 5 [[] (G) = 4

Types g F &[[]g | fn(g) → g | ⊥
Proofs c F G1 ↔ G2

Locations [F ; | ?
Typing Context Γ F ∅ | Γ, G : [[]g

Location Context Λ F ∅ | Λ, [↦→ g

Figure 1. Syntax of _UR

T-New
Γ;Λ, ; ↦→ ⊥ ` 4 : g

Γ;Λ ` G = new(;); 4 : g

T-Assign
Γ;Λ ` G : &[[]g1 Γ;Λ ` 41 : g1 Γ;Λ ` 42 : g2

Γ;Λ ` G = 41; 42 : g2

T-Borrow
Γ;Λ ` G : [[]g

Γ;Λ ` &G : &[[]g

T-Deref
Γ;Λ ` G : &[[]g

∗G : g

T-Fun
Γ, 5 : fn(g) → g ` 4 : g

Γ;Λ ` fn 5 (G) = 4 : fn(g) → g

T-Var
G : g ∈ Γ

Γ,Λ ` G : g

Figure 2. Typing of _UR

3.2 Permissions in parallel code
TODO: Parallel code

Now, if an expression 4 contains two references G1 and G2,
one the following conditions must be met:

4 Formalization
4.1 Syntax of _UR
Figure 1 summarizes the syntax of _UR.

Local variables can be introduced with bindings and are
pure values. New allocations can be introduced by the G =

new(;); 4 construction, binding the local variable G to a con-
crete heap-allocated location represented by ; .

A function is declared as fn 5 (G) = 4 , where 5 is a binder
for the (potentially recursive) function and G is a list of pa-
rameter binders. Functions can be called using parentheses.
_UR introduces references, marked by &. Reference types

contain the type of the pointee and a list of possible locations
of the pointee.

Use-Based Reference Types for Borrow Checking Conference’17, July 2017, Washington, DC, USA

4.2 Type Checking of _UR
1. Use CFG: Each node of the CFG keeps track of all

references, their state, and their potential provenances
2. Operational semantics to walk through the CFG

5 Related Work
1. ATS – manual proof threading
2. Rust – construction-based references
3. Vale – read/write regions
4. Linear programming – returning values back
5. Weaknesses⁇?

6 Future Work
1. Adding product types/arrays/multi-location-allocations
2. Non-termination?
3. Generic/dependent proofs, monomorphization: One

function may have several signatures depending on
supplied argument provenances. Stronger input guar-
antees lead to stronger output guarantees?

4. Provenance set == region?

7 Editing Notes
• Enough examples?
• Intition, not details?
• Sentence flow?
• One point per paragraph?
• Bigger picture clear?
• Consistent names?
• Context–Gap–Inovation

• Uniform format for algorithmic, syntax, semantics, and
text.

• Does ”new” need an expression?
• location + provenance set notation
• Do we need types? Pro: Deref should only work on

references, not on pure values. Con: If we have types,
we must pay attention to if/how types influence the
ability of references to alias (can G1 : g1 and G2 : g2
alias for g1 ≠ g2?). Maybe add base types, even? They
have no provenance but are pure values.

• Parallel execution in syntax/semantics? Async?
• ∗ ∗G B 4 marks G as read but ∗G as write – if we allow

it (currently we don’t)
• Double reads are a problem: G1 read, G2 write, G1 read

again. No race condition, but also no guarantee that
two reads of a read-only reference will yield the same
value.

• Sequence expressions
1. Vale regions: imm/rw
2. Builds on Ownership, needs One True Name/Prove-

nance
Usage examples:
1. Known concrete provenance

2. Several references with the same provenance
3. Several references with different concrete provenance
4. Several references with abstract provenance: Need

proofs
5. Passing proofs to functions/proofs in the signature
6. unsafe proofs
Semantics of Proof Finding:
1. Fresh allocations are unrestricted
2. Keep track of all (de-)activation points
3. Every reference has a list of possible provenances, that

is, names it may alias with.
4. Having a point in the program at which two refer-

ences which may alias and that are active in a way
that violates AXM, is an error

5. Proofs can be passed as arguments/are part of function
signatures

6. Generate proofs in an unsafe way

	Abstract
	1 Introduction
	2 Regions and Aliasing
	2.1 Provenance of Borrows
	2.2 Provenance of Function Arguments
	2.3 Provenance of Return Values

	3 Permissions
	3.1 Permissions in sequential code
	3.2 Permissions in parallel code

	4 Formalization
	4.1 Syntax of UR
	4.2 Type Checking of UR

	5 Related Work
	6 Future Work
	7 Editing Notes

