/* * simulate a cellular automaton with periodic boundaries (torus-like) * OpenMP version * * (c) 2024 Dorian Stoll (C++ / Eigen port) * (c) 2016 Steffen Christgau (C99 port, modularization, parallelization) * (c) 1996,1997 Peter Sanders, Ingo Boesnach (original source) * * command line arguments: * #1: Number of lines * #2: Number of iterations to be simulated * */ /* * Eigen defaults to using column-major order for its container types. * * However, using it like that would make the lines parameter correspond to Eigens .cols() function * instead of the more fitting .rows(). To make the code more obvious, we change the default. */ #define EIGEN_DEFAULT_TO_ROW_MAJOR #include <Eigen/Eigen> #include <cassert> #include <cstdint> #include <cstdlib> #include <iostream> #include <stdexcept> class Automat { private: /* "ADT" State */ using cell_state_t = uint8_t; using Field = Eigen::Matrix<cell_state_t, Eigen::Dynamic, Eigen::Dynamic>; private: /* horizontal size of the configuration */ static constexpr Eigen::Index XSIZE = 1024; static constexpr Eigen::Index LINE_SIZE = XSIZE + 2; /* annealing rule from ChoDro96 page 34 * the table is used to map the number of nonzero * states in the neighborhood to the new state */ static constexpr std::array<cell_state_t, 10> ANNEAL {0, 0, 0, 0, 1, 0, 1, 1, 1, 1}; private: int m_lines; Field m_from {}; Field m_to {}; public: Automat(const int lines) : m_lines {lines} { if (lines <= 0) throw std::invalid_argument {"There must be at least one line"}; m_from.resize(lines + 2, LINE_SIZE); m_to.resize(lines + 2, LINE_SIZE); } void run(const int its) { this->init_config(); for (int i = 0; i < its; i++) { this->boundary(); this->simulate(); std::swap(m_from, m_to); } } void report() { auto block = m_from(Eigen::seqN(1, m_lines), Eigen::all); for (Eigen::Index y = 0; y < block.rows(); y++) { block(y, 0) = 0; block(y, block.cols() - 1) = 0; } const auto start = block.data(); const auto end = start + (block.size() * sizeof(*start)); std::copy(start, end, std::ostreambuf_iterator(std::cout)); } private: /* random starting configuration */ void init_config() { srand(424243); for (Eigen::Index y = 1; y <= m_to.rows() - 2; y++) { for (Eigen::Index x = 1; x <= m_from.cols() - 2; x++) m_from(y, x) = rand() % 2; } } /* treat torus like boundary conditions */ void boundary() { #pragma omp sections { #pragma omp section #pragma omp parallel for for (Eigen::Index y = 0; y < m_from.rows(); y++) { /* copy rightmost column to the buffer column 0 */ m_from(y, 0) = m_from(y, m_from.cols() - 2); /* copy leftmost column to the buffer column XSIZE + 1 */ m_from(y, m_from.cols() - 1) = m_from(y, 1); } #pragma omp section #pragma omp parallel for for (Eigen::Index x = 0; x < m_from.cols(); x++) { /* copy bottommost row to buffer row 0 */ m_from(0, x) = m_from(m_from.rows() - 2, x); /* copy topmost row to buffer row lines + 1 */ m_from(m_from.rows() - 1, x) = m_from(1, x); } } } /* make one simulation iteration with lines lines. * old configuration is in from, new one is written to to. */ void simulate() { #pragma omp parallel for for (Eigen::Index y = 1; y <= m_from.rows() - 2; y++) { for (Eigen::Index x = 1; x <= m_from.cols() - 2; x++) m_to(y, x) = transition(m_from, x, y); } } /* a: reference to matrix; x,y: coordinates; result: n-th element of anneal, where n is the number of neighbors */ cell_state_t transition(const Field &a, const Eigen::Index x, const Eigen::Index y) const { return ANNEAL[a(Eigen::seq(y - 1, y + 1), Eigen::seq(x - 1, x + 1)).sum()]; } }; int main(int argc, char **argv) { assert(argc == 3); int lines = atoi(argv[1]); int its = atoi(argv[2]); Automat ca {lines}; ca.run(its); ca.report(); return EXIT_SUCCESS; }