
Energy Aware Runtime (EAR)

package provides an energy

management framework for super

computers. EAR contains different

components, all together provide three

main services:

1. An easy-to-use and lightweight optimizarion service to automatically select the optimal CPU frequency

according to the application and the node characteristics. This service is provided by two components: the

EAR library (EARL) and the EAR daemon (EARD). EARL is a smart component which is loaded next to the

application, intercepting MPI calls and selecting the CPU frequency based on the application behaviour on

the fly. The library is loaded automatically through the EAR Loader (EARLO) and SLURM plugin

(EARPLUG).

2. A complete energy and performance accounting and monitoring system based on SQL database

(MariaDB and PostgreSQL are supported). The energy accounting system is configurable in terms of

application details and update frequency. The EAR database daemon (EARDBD) is used to cache those

metrics prior to DB insertions.

3. A global energy management to monitor and control the energy consumed in the system through the EAR

global manager daemon (EARGMD). This control is configurable, it can dynamically adapt policy settings

based on global energy limits or just offer global cluster monitoring.

Visit the architecture section for a detailed description of each of these components of EAR.

License

EAR is a open source software and it is licensed under both the BSD-3 license for individual/non-commercial

use and EPL-1.0 license for commercial use. Full text of both licenses can be found in COPYING.BSD and

COPYING.EPL files.

Contact: ear-support@bsc.es

Running applications with EAR

With EAR's SLURM plugin, running an application with EAR is as easy as submitting a job with either srun ,

sbatch  or mpirun  with SLURM. There are multiple configuration settings that can be set to customize EAR's

behaviour which are explained below, as well as examples on how to run applications with each method.

For other schedulers a simple prolog/epilog command can be created to provide transparent job submission

with EAR and default configuration.

Job submission with EAR and SLURM



The following EAR options can be specified when running srun  and/or sbatch , and are supported with

srun / sbatch / salloc :

Options Description

--ear=on/off(**) Enables/disables EAR library loading with this job.

--ear-policy=policy Selects an energy policy for EAR. See the Policies page for more info

--ear-

cpufreq=frequency(*)
Specifies the starting frequency to be used by the chosen EAR policy (in KHz).

--ear-policy-th=value(*) Specifies the ear_threshold to be used by the chosen EAR policy { value=[0...1] }.

--ear-user-db=file
Specifies the files where the user applications' metrics summary will be stored

{'file.nodename.csv'}. If not defined, these files will not be created.

--ear-verbose=value Specifies the level of verbosity {value=[0...1]}; the default is 0.

--ear-tag=tag Selects an energy tag.

--ear-

learning=p_state(*)
Enables the learning phase for a given P_STATE { p_state=[1...n] }.

For more information consult srun --help  output or see configuration options sections for more detailed

description.

(*) Option requires ear privileges to be used. (**) Does not require ear privileges but values might be limited

by EAR configuration.

GPU support

EAR version 3.4 and upwards supports GPU monitoring for NVIDIA devices from the point of view of the

application and node monitoring. GPU frequency optimization is not yet supported. Authorized users can ask

for a specific GPU frequency by setting the SLURM_EAR_GPU_DEF_FREQ environment variable. Only one

frequency for all GPUs is now supported.

EAR library loading

EAR uses the EAR loader to automatically select the EAR optimization library version. This optimization

library is automatically loaded when either an MPI, OpenMP, MKL or CUDA application is detected.

Application identification is done based on symbols detection. I doesn't work for static symbols.

MPI versions supported

When using sbacth/srun or salloc, Intel MPI and OpenMPI are 100% supported. When using mpi commands

to start applications (mpirun, mpiexec.hydra, etc.), there are minor differences explained in examples below.

Examples

srun  examples

EAR plugin reads srun  options and contacts with EARD. Invalid options are filtered to default values, so

behaviour will depend on system configuration.



Executes an application with EAR on/off (depending on the configuration) with default values:

srun -J test -N 1 -n 24 --tasks-per-node=24 application

Executes an application with EAR on with default values (policy, default frequency, etc.) and verbose set

to 1:

srun --ear-verbose=1 -J test -N 1 -n 24 --tasks-per-node=24 application

EARL verbose messages are generated in the stderr. For jobs using more than 2 or 3 nodes messages

can be overwritten. If the user wants to have EARL messages in a file the

SLURM_EARL_VERBOSE_PATH environment variable must be set with a folder name. One file per node

will be generated with EARL messages.

Executes an application with EAR on and verbose set to 1. If user is authorised, job will be executed at

2.0GHz as default frequency and with power policy set to monitoring. Otherwise, default values will be

applied:

srun --ear-cpufreq=2000000 --ear-policy=monitoring --ear-verbose=1 -J test -N 1 -n 24 --tasks-per-node=

Executes an application with EAR. If user is authorised to select the “memory-intensive” tag, the application

will be executed according to the definition of the tag in the EAR configuration:

srun --ear-tag=memory-intensive --ear-verbose=1 -J test -N 1 -n 24 --tasks-per-node=24 application

sbatch  examples

When using sbatch  EAR options can be specified in the same way. If more than one srun is included in the

job submission, EAR options can be inherited from sbatch  to the different srun s or specifically modified in

each individual srun .

The following example will set the ear verbose mode for all the job steps to 1. First job step will be executed

with default settings and second one with monitoring as policy.

#!/bin/bash
#SBATCH -N 1
#SBATCH -e test.%j.err
#SBATCH -o test.%j.out
#SBTACH --ntasks=24
#SBATCH --tasks-per-node=24
#SBATCH --cpus-per-task=1
#SBATCH --ear-verbose=1

srun  application
srun --ear-policy=monitoring application



Running EAR with mpirun  (in SLURM systems)

INTEL MPI

When running EAR with mpirun  rather than srun , we have to specify the utilisation of srun  as bootstrap.

Otherwise jobs will not go through the SLURM plugin and any EAR options will not be recognised. The API

depends on Intel version. Versions prior to 2018 use two mpirun  arguments to specify the bootstrap and

extra SLURM flags (to be passed to SLURM).

The following example will run application with min_time_to_solution policy:

mpirun -n 10 -bootstrap slurm -bootstrap-exec-args="--ear-policy=min_time” application

Version 2019 and newer offers two environment variables rather than mpirun arguments.

export I_MPI_HYDRA_BOOTSTRAP=slurm
export I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS="--ear-policy=monitoring --ear-verbose=1"
mpiexec.hydra -n 10 application

OPENMPI

Bootstrap is an Intel® MPI option but not an OpenMPI option. For OpenMPI srun  must be used for an

automatic EAR support, or use the erun  program explained below.

ERUN

ERUN is a program that simulates all the SLURM and EAR SLURM Plugin pipeline. It comes with the EAR

package and is compiled automatically. You can find it in in bin  folder in your installation path. It must be

used when a set of nodes does not have SLURM installed or when using OpenMPI mpirun  which does not

contact with SLURM. You can launch ERUN instead of directly run your application:

mpirun -n 4 /path/to/erun --program="hostname --alias"

In this example, MPIRUN would run 4 ERUN processes. Then, ERUN would launch the application hostname

with its alias parameter. You can use as many parameters as you want but the semicolons have to cover all

the parameters in case there are more than just the program name. ERUN would simulate in the remote node

both the local and remote pipelines for all created processes. It has an internal system to avoid repeating

functions that are executed just one time per job or node, like SLURM does with its plugins.



> erun --help

This is the list of ERUN parameters:
Usage: ./erun [OPTIONS]

Options:
--job-id=<arg>    Set the JOB_ID.
--nodes=<arg>    Sets the number of nodes.
--program=<arg>    Sets the program to run.
--clean        Removes the internal files.

SLURM options:
...

The --job-id  and --nodes  parameters create the environment variables that SLURM would have created

automatically, because it is possible that your application make use of them. The --clean  option removes

the temporal files created to synchronize all ERUN processes.

Also you have to load the EAR environment module or define its environment variables in your environment

or script:

Variable Parameter

EAR_INSTALL_PATH=\<path>prefix=\<path>

EAR_TMP=\<path> localstatedir=\<path>

EAR_ETC=\<path> sysconfdir=\<path>

EAR_DEFAULT=\<on/off> default=<on/off>

Lastly, the tipical SLURM parameters can be passed to ERUN in the same way they were written to SRUN or

SBATCH. In example:

mpirun -n 4 /path/to/erun --program="myapp" --ear-policy=monitoring --ear-verbose=2

User commands

The only command available to users is eacct . With eacct  a user can see their previously executed jobs

with the information that EAR monitors (time, average power, number of nodes and average frequency among

others) and also can use several options to manipulate said output. Some data will not be available if a job is

not executed with EARL.

Note that a user can only see their own applications/jobs unless they are a privileged user and specified as

such in the ear.conf  configuration file.

For more information, check its Commands section.

Using the EAR API

EAR offers a user API for applications. The current EAR version only offers two functions, one to read the

accumulated energy and time and another to compute the difference between the two measurements.



int ear_connect()

int ear_energy(unsigned long *energy_mj, unsigned long *time_ms)

void ear_energy_diff(unsigned long ebegin, unsigned long eend, unsigned long *ediff, unsigned

long tbegin, unsigned long tend, unsigned long *tdiff)

int ear_set_gpufreq(int gpu_id,unsigned long gpufreq)

int ear_set_gpufreq_list(int num_gpus,unsigned long *gpufreqlist)

void ear_disconnect()

EAR's header file and library can be found at $EAR_INSTALL_PATH/include/ear.h and

$EAR_INSTALL_PATH/lib/libEAR_api.so respectively. The following example reports the energy, time, and

average power during that time for a simple loop including a sleep(5) .



#include <ear.h>

int main(int argc,char *argv[])
{
  unsigned long e_mj=0,t_ms=0,e_mj_init,t_ms_init,e_mj_end,t_ms_end=0;
  unsigned long ej,emj,ts,tms,os,oms;
  unsigned long ej_e,emj_e,ts_e,tms_e,os_e,oms_e;
int i=0;

  struct tm *tstamp,*tstamp2,*tstamp3,*tstamp4;
char s[128],s2[128],s3[128],s4[128];

/* Connecting with ear */
if (ear_connect()!=EAR_SUCCESS)

  {
    printf("error connecting eard\n");

exit(1);
  }

/* Reading energy */
if (ear_energy(&e_mj_init,&t_ms_init)!=EAR_SUCCESS)

  {
    printf("Error in ear_energy\n");
  }
while(i<5)

  {
    sleep(5);

/* READING ENERGY */
if (ear_energy(&e_mj_end,&t_ms_end)!=EAR_SUCCESS)

    {
      printf("Error in ear_energy\n");
    }

else
    {
      ts=t_ms_init/1000;
      ts_e=t_ms_end/1000;
      tstamp=localtime((time_t *)&ts);
      strftime(s, sizeof(s), "%c", tstamp);
              tstamp2=localtime((time_t *)&ts_e);
              strftime(s2, sizeof(s), "%c", tstamp2);

      printf("Start time %s End time %s\n",s,s2);
      ear_energy_diff(e_mj_init,e_mj_end, &e_mj, t_ms_init,t_ms_end,&t_ms);
      printf("Time consumed %lu (ms), energy consumed %lu(mJ), 
             Avg power %lf(W)\n",t_ms,e_mj,(double)e_mj/(double)t_ms);
      e_mj_init=e_mj_end;
      t_ms_init=t_ms_end;
    }
    i++;
  }



  ear_disconnect();
}

EAR offers three energy policies plugins: min_energy , min_time  and monitoring . The last one is not a

power policy, is used just for application monitoring where CPU frequency is not modified.

The energy policy is selected by setting the --ear-policy=policy  option when submitting a SLURM job. A

policy parameter, which is a particular value or threshold depending on the policy, can be set using the flag

--ear-policy-th=value . Its default value is defined in the configuration file, for more information check the

configuration page for more information.

Plugin min_energy

The goal of this policy is to minimise the energy consumed with a limit to the performance degradation. This

limit is is set in the SLURM --ear-policy-th  option or the configuration file. The min_energy  policy will

select the optimal frequency that minimizes energy enforcing (performance degradation <= parameter). When

executing with this policy, applications starts at default frequency(specified at ear.conf).

PerfDegr = (CurrTime - PrevTime) / (PrevTime)

Plugin min_time

The goal of this policy is to improve the execution time while guaranteeing a minimum ratio between

performance benefit and frequency increment that justifies the increased energy consumption from this

frequency increment. The policy uses the SLURM parameter option mentioned above as a minimum

efficiency threshold.

Example: if --ear-policy-th=0.75 , EAR will prevent scaling to upper frequencies if the ratio between

performance gain and frequency gain do not improve at least 75% (PerfGain >= (FreqGain * threshold).

PerfGain=(PrevTime-CurrTime)/PrevTime
FreqGain=(CurFreq-PrevFreq)/PrevFreq

When launched with min_time  policy, applications start at a default frequency (defined at ear.conf ). Check

the configuration page for more information.

Example: given a system with a nominal frequency of 2.3GHz and default P_STATE set to 3, an application

executed with min_time  will start with frequency F[i]=2.0Ghz  (3 P_STATEs less than nominal). When

application metrics are computed, the library will compute performance projection for F[i+1]  and will

compute the performance_gain as shown in the Figure 1. If performance gain is greater or equal than

threshold, the policy will check with the next performance projection F[i+2] . If the performance gain

computed is less than threshold, the policy will select the last frequency where the performance gain was

enough, preventing the waste of energy.

Figure 1: min_time  uses threashold as the minimum value for the performance gain between between F[i]

and F[i+1] .



EAR commands

EAR offers the following commands:

Commands to analyze data stored in the DB: 

Commands to control and temporally modify cluster settings: 

Commands to create/update/clean the DB: edb_create and edb_clean_pm

All these commands read the EAR configurarion file (ear.conf) to determine if the user is an authorized (or not

user). Root is a special case, it doesn't need to be included in the list of authorized users. Some options are

disabled when the user is not authorized.

Energy Account (eacct)

The eacct command shows accounting information stored in the EAR DB for jobs (and step) IDs. The

command uses EAR's configuration file to determine if the user running it is privileged or not, as non-

privileged users can only access their information. It provides the following options.

Usage: eacct [Optional parameters]
        Optional parameters: 
            -h      displays this message
            -v      displays current EAR version
            -u      specifies the user whose applications will be retrieved. Only available to privileged users. [
            -j      specifies the job id and step id to retrieve with the format [jobid.stepid] 
                                A user can only retrieve its own jobs unless said user is privileged. [default: al
            -a      specifies the application names that will be retrieved. [default: all app_ids]
            -c      specifies the file where the output will be stored in CSV format. [default: no 
            -t      specifies the energy_tag of the jobs that will be retrieved. [default: all tags].
            -l      shows the information for each node for each job instead of the global statistics 
            -x      shows the last EAR events. Nodes, job ids, and step ids can be specified as
            -m      prints power signatures regardless of whether mpi signatures are available 
            -r      shows the EAR loop signatures. Nodes, job ids, and step ids can be specified 
            -n      specifies the number of jobs to be shown, starting from the most recent one
            -f      specifies the file where the user-database can be found. If this option is used, 
            -b      verbose mode for debugging purposes

Example

The basic usage of eacct retrieves the last 20 applications (by default) of the user executing it. If a user is

privileged, they may see all users applications. The default behaviour shows data from each job-step,

aggregating the values from each node in said job-step. If using SLURM as a job manager, a sb (sbatch) job-

step is created with the data from the entire execution. A specific job may be specified with -j:



[user@host EAR]$ eacct -j 175966
JOB-STEP USER APPLICATION POLICY NODES AVG/DEF/IMC(GHz) TIME(s) POWER(W) GBS

175966-sb user afid NP 2 2.97/3.00/--- 3660.00 381.51 ---
175966-2 user afid MO 2 2.97/3.00/2.39 1205.26 413.02 146.
175966-1 user afid MT 2 2.62/2.60/2.37 1234.41 369.90 142.
175966-0 user afid ME 2 2.71/3.00/2.19 1203.33 364.60 146.

For node-specific information, the -l option provides detailed accounting of each individual node:

[user@host EAR]$ eacct -j 175966 -l
JOB-STEP NODE ID USER ID APPLICATION AVG-F/IMC-F TIME(s) POWER(s) GBS

175966-sb cmp2506 user afid 2.97/--- 3660.00 388.79 ---
175966-sb cmp2507 user afid 2.97/--- 3660.00 374.22 ---
175966-2 cmp2506 user afid 2.97/2.39 1205.27 423.81 146.06
175966-2 cmp2507 user afid 2.97/2.39 1205.26 402.22 146.35
175966-1 cmp2506 user afid 2.58/2.38 1234.46 374.14 142.51
175966-1 cmp2507 user afid 2.67/2.37 1234.35 365.67 142.75
175966-0 cmp2506 user afid 2.71/2.19 1203.32 371.76 146.25
175966-0 cmp2507 user afid 2.71/2.19 1203.35 357.44 146.21

For runtime data (EAR loops) one may retrieve them with -r. Both job_id and step_id filtering works:

[user@host EAR]$ eacct -j 175966.1 -r
    JOB-STEP      NODE ID    ITER.  POWER(W) GBS      CPI      GFLOPS/W TIME(s)  AVG_F IMC_F IO
175966-1         cmp2506    21 360.6 115.8 0.838 0.086 1.001 2.58 2.30 0.0
175966-1         cmp2507    21 333.7 118.4 0.849 0.081 1.001 2.58 2.32 0.0
175966-1         cmp2506    31 388.6 142.3 1.010 0.121 1.113 2.58 2.38 0.0
175966-1         cmp2507    31 362.8 142.8 1.035 0.130 1.113 2.59 2.37 0.0
175966-1         cmp2506    41 383.3 143.2 1.034 0.124 1.114 2.58 2.38 0.0

To easily transfer eacct's output, -c option saves it in .csv format. Both aggregated and detailed accountings

are available, as well as filtering:

[user@host EAR]$ eacct -j 175966 -c test.csv
 Successfully written applications to csv. Only applications with EARL will have its information properly written.

[user@host EAR]$ eacct -j 175966.1 -c -l test.csv
 Successfully written applications to csv. Only applications with EARL will have its information properly written.

Energy report (ereport)

The ereport command creates reports from the energy accounting data from nodes stored in the EAR DB. It is

intended to use for energy consumption analysis over a set period of time, with some additional (optional)

criteria such as node name or username.



Usage: ereport [options]
Options are as follows:
    -s start_time            indicates the start of the period from which the energy consumed will be computed. 
    -e end_time              indicates the end of the period from which the energy consumed will be computed. 
    -n node_name |all        indicates from which node the energy will be computed. Default: none

'all' option shows all users individually, not aggregated.
    -u user_name |all        requests the energy consumed by a user in the selected period of time

'all' option shows all users individually, not aggregated.
    -t energy_tag|all        requests the energy consumed by energy tag in the selected period

'all' option shows all tags individually, not aggregated.
    -i eardbd_name|all       indicates from which eardbd (island) the energy will be computed. 

'all' option shows all eardbds individually, not aggregated.
    -g                       shows the contents of EAR's database Global_energy table. The default option will sho
                                         This option can only be modified with -s, not -e
    -x                       shows the daemon events from -s to -e. If no time frame is specified, it shows the la
    -v                       shows current EAR version.
    -h                       shows this message.

Examples

The following example uses the 'all' nodes option to display information for each node, as well as a start_time

so it will give the accumulated energy from that moment until the current time.

[user@host EAR]$ ereport -n all -s 2018-09-18
     Energy (J)       Node      Avg. Power (W)

20668697         node1        146
20305667         node2        144
20435720         node3        145
20050422         node4        142
20384664         node5        144
20432626         node6        145
18029624         node7        128

This example filters by EARDBD host (one per island typically) instead:

[user@host EAR]$ ereport -s 2019-05-19 -i all
     Energy (J)        Node     

9356791387        island1 
30475201705        island2
37814151095        island3 
28573716711        island4 
29700149501        island5 
26342209716        island6

And to see the state of the cluster's energy budget (set by the sysadmin) you can use the following:



[user@host EAR]$ ereport -g 
Energy%  Warning lvl            Timestamp       INC th      p_state    ENERGY T1    ENERGY T2      TIME T1      TI
111.486 100 2019-05-22 10:31:34 0 100 893 1011400
111.492 100 2019-05-22 10:21:34 0 100 859 1011456
111.501 100 2019-05-22 10:11:34 0 100 862 1011533
111.514 100 2019-05-22 10:01:34 0 100 842 1011658
111.532 100 2019-05-22 09:51:34 0 100 828 1011817
111.554 0 2019-05-22 09:41:34 0 0 837 1012019

Energy control (econtrol)

The econtrol command modifies cluster settings (temporally) related to power policy settings. These options

are sent to all the nodes in the cluster.

NOTE: Any changes done with econtrol  will not be reflected in ear.conf  and thus will be lost when

reloading the system.

Usage: econtrol [options]

--status                                ->requests the current status for all nodes. The ones responding show 
                                            power, IP address and policy configuration. A list 
                                            responding is provided with their hostnames and IP address.

--status=node_name retrieves the status of that node individually.
--type          [status_type]           ->specifies what type of status will be requested: hardware,

                                            policy, full (hardware+policy), app_node, app_master, eardbd 
--set-freq      [newfreq]               ->sets the frequency of all nodes to the requested one
--set-def-freq  [newfreq]  [pol_name]   ->sets the default frequency for the selected policy
--set-max-freq  [newfreq]               ->sets the maximum frequency
--set-powercap  [new_cap]               ->sets the powercap of all nodes to the given value. A node can be spe

after the value to only target said node.
--restore-conf                          ->restores the configuration for all nodes
--active-only                           ->supresses inactive nodes from the output in hardware status.
--health-check                          ->checks all EARDs and EARDBDs for errors and prints all that are unre
--mail [address]                        ->sends the output of the program to address.
--ping                                  ->pings all nodes to check whether the nodes are up or not. Additional

--ping=node_name pings that node individually.
--version                               ->displays current EAR version.
--help                                  ->displays this message.

econtrol 's status is a useful tool to monitor the nodes in a cluster. The most basic usage is the hardware

status (default type) which shows basic information of all the nodes.



[user@login]$ econtrol --status
hostname      power   temp    freq    job_id  stepid
   node2        278 66C    2.59 6878 0
   node3        274 57C    2.59 6878 0
   node4         52 31C    1.69 0 0

INACTIVE NODES
node1   192.0.0.1

The application status type can be used to retrieve all currently running jobs in the cluster. app_master  gives

a summary of all the running applications while app_node  gives detailed information of each node currently

running a job.

[user@login]$ econtrol --status --type=app_master
Job-Step    Nodes   DC power      CPI      GBS   Gflops     Time Avg Freq

6878-0 2 280.13 0.37 24.39 137.57 54.00 2.59

[user@login]$ econtrol --status --type=app_node
Node id     Job-Step   M-Rank   DC power      CPI      GBS   Gflops     Time Avg Freq
  node2       6878-0 0 280.13 0.37 24.39 137.57 56.00 2.59
  node3       6878-0 1 245.44 0.37 24.29 136.40 56.00 2.59

Database commands

edb_create

Creates the EAR DB used for accounting and for the global energy control. Requires root access to the

MySQL server. It reads the ear.conf to get connection details (server IP and port), DB name (which may or

may not have been previously created) and EAR's default users (which will be created or altered to have the

necessary privileges on EAR's database).

Example

Usage:edb_create [options]
        -p       Specify the password for MySQL's root user.
        -o       Outputs the commands that would run.
        -r       Runs the program. If '-o' this option will be override.
        -h       Shows this message.

edb_clean_pm

Cleans periodic metrics from the database. Useful to reduce the size of EAR's database. For more

information check the FAQs regarding MySQL size management



Components

EAR is composed of five main components:

Node Manager (EARD). The Node Manager must have root access to the node where it will be running.

Database Manager (EARDBD). The database manager requires access to the DB server (we support

MariaDB and Postgress). Documentation for Postgress is still under development.

Global Manager (EARGM). The global manager needs access to all node managers in the cluster as well

as access to database.

Library (EARL)

SLURM plugin

The following image shows the main interactions between components:

Quick Installation Guide

This section provides a, summed up, step by step installation and execution guide for EAR. For a more in

depth explanation of the necessary steps see the Installation from source or Installation from RPM, following

the Configuration and Execution guides, or contact us at ear-support@bsc.es

Requirements



To install EAR from sources, the following libraries and environments are needed: C compiler, MPI compiler

and library if MPI version is generated, mysqlclient for mariaDB or postgresql library. libGSL is needed for

coefficient computations

To install EAR from rpm (only binaries) all these dependencies have been removed except mysqlclient.

However, they are neeed when running EAR.

SLURM must also be present if the SLURM plugin wants to be used. Since current EAR version only

supports automatic execution of applications with EAR library using the SLURM plugin, it must be running

when EAR library wants to be used (not needed for node monitoring).

The drivers for CPUFreq management (acpi-cpufreq) and Open IPMI must be present and loaded in

compute nodes.

msr kernel module must be loaded in compute nodes.

mariaDB or postgress server must be up and running.

Hardware counters must be accessible for normal users. Set /proc/sys/kernel/perf_event_paranoid to 2 (or

less). Type sudo sh -c "echo 2 > /proc/sys/kernel/perf_event_paranoid"  in compute nodes.

Installation, configuration and execution

1. Compile and install from source code or install via rpm. $EAR_TMP  and $EAR_ETC  are defined in ear module.

Till the module is not loaded, define manually these environment variables to execute the next steps.

2. Create the $EAR_TMP  folder. This folder must be local to each node, so we recommend to create it in

/var/ear.

3. Either installing from sources or rpm, EAR installs a template for ear.conf file in $EAR_ETC/ear

/ear.conf.template . Copy at $EAR_ETC/ear/ear.conf  and update with the desired configuration. Go to

ear.conf page to see how to do it. The ear.conf is used by all the services.

4. Load EAR module to enable commands. It can be found in $EAR_ETC/module . You can add ear module

when it's not in standard paths by doing module use $EAR_ETC/module  and then module load ear .

5. Create EAR database with edb_create . The edb_create -p  command will ask you for the DB root

password. If you get any problem here, check first whether the node where you are running the command

can connect to the DB server. In case problems persists, execute edb_create -o  to report the specific SQL

queries generated. In case of trouble, contact with ear-support@bsc.es.

6. EAR uses a power and performance model based on systems signatures. These system signatures are

stored in coefficient files. Before starting EARD, and just for testing, it is needed to create a dummy

coefficient file and copy in the coefficients path (by default placed at $EAR_ETC/coeffs ). Visit the coeffs_null

application from tools section.

7. Copy EAR service files to start/stop services using system commands such as systemctl. EAR service files

are generated at $EAR_ETC/systemd  and they can usually be placed in $(ETC)/systemd .

8. Start EARDs and EARDBDs via services (see our Launching the components with unit services). EARDBD

and EARD outputs can be found at $EAR_TMP/eardbd.log  and $EAR_TMP/eard.log  respectively when

DBDaemonUseLog and NodeUseLog options are set to 1 in ear.conf file. Otherwise, their outputs are

generated in stderr and can be seen using the journactl command. For instance, use journactl -u eard  to

look at eard output.

9. Check that EARDs are up and running correctly with econtrol --status  (note that daemons will take

around a minute to correctly report energy and not show up as an error in econtrol ). EARDs create a per-

node text file with values reported to the EARDBD. In case there are problems when running econtrol, you

can also find this file at $EAR_TMP/nodename.pm_periodic_data.txt .

10. Check that EARDs are reporting metrics to database with ereport. ereport -n all  should report the total

energy send by each daemon since the setup.



11. Start EARGM via services.

12. Check if EARGM is reporting to database with ereport -g . Note that EARGM will take a period of time set

by the admin in ear.conf (GlobalManagerPeriodT1 option) to report for the first time.

13. Set up EAR's SLURM plugin (see our Configuration page for more information).

14. Run an application via SLURM and check that it is correctly reported to database with eacct . Note that

only privileged users can check other users' applications.

15. Run an MPI application with --ear=on  and check that the report by eacct  now includes the library metrics.

EAR library depends on the MPI version: Intel, OpenMPI, etc. By default libear.so is used. Different names

for different versions can be specified automatically by adding the EAR version name in the corresponding

MPI module. For instance, for libear.openmpi.4.0.0.so library, define SLURM_EAR_MPI_VERSION  environment

variable as openmpi.4.0.0. When EAR has been installed from sources, this name is the same as it is

specified in MPI_VERSION during the configure . When installed from rpm, look at

$EAR_INSTALL_PATH/lib  to see the available versions.

16. Set default=on  to specify the EAR library will be loaded with all the applications by default in

plugstack.conf . If default is set to off, EAR library can be explicitly loaded by doing --ear=on when

submitting a job.

17. At this point you can use EAR for monitoring and accounting purposes, but it cannot use the power policies

for EARL. To do that, first do a learning phase and compute the coefficients.

18. For the coefficients to be active, restart the daemons. IMPORTANT: reloading the daemons will NOT make

them load the coefficients, restarting is the only way.

Requirements

EAR requires some third party libraries and headers to compile and run, in addition to the basic requirements

such as the compiler and Autoconf. This is a list of these libraries, minimum tested versions and its

references:

Library Minimum versionReferences

SLURM 17.02.6 Website (https://slurm.schedmd.com/)

MPI - -

MySQL* 15.1 MySQL (https://mysql.com) or MariaDB (https://mariadb.org/)

PostgreSQL*9.2 PostgreSQL (https://www.postgresql.org/)

CUDA** 7.5 CUDA (https://mysql.com) or MariaDB (https://mariadb.org/)

Autoconf 2.69 Website (https://www.gnu.org/software/autoconf/autoconf.html)

GSL 1.4 Website (https://www.gnu.org/software/gsl/)

* Just one of them required.

** Required if you want to monitor GPU data.

Also, some drivers has to be present and loaded in the system:

Driver File
Kernel

version
References

CPUFreq
kernel/drivers/cpufreq

/acpi-cpufreq.ko
3.10

Information (https://wiki.archlinux.org/index.php

/CPU_frequency_scaling)

Open

IPMI

kernel/drivers

/char/ipmi/*.ko
3.10

Information (https://docs.oracle.com/en/database/oracle/oracle-

database/12.2/cwlin/configuring-the-open-ipmi-driver.html)

Lastly, the compilers: EAR uses C compilers. It has been tested with both Intel and GNU.



Compiler Comment
Minimum

version
References

GNU Compiler Collection

(GCC)

For the library and

daemon
4.8.5 Website (https://gcc.gnu.org/)

Intel C Compiler (ICC)
For the library and

daemon
17.0.1

Website (https://software.intel.com/en-us/c-

compilers)

Compilation and installation guide summary

1. Before the installation, make sure the installation path is accessible by all the computing nodes. Do the

same in the folder where you want to set the configuration files (it will be called $(EAR_ETC)  in this guide for

simplicity).

2. Generate Autoconf's configure  program by typing autoreconf -i .

3. Read sections below to understand how to properly set the configure  parameters.

4. Compile EAR components by typing ./configure ... , make  and make install  in the root directory.

5. Type make etc.install  to install the content of $(EAR_ETC) . It is the configuration content, but that

configuration will be expanded in the next section. You have a link at the bottom of this page.

Configure options

configure  is based on shell variables which initial value could be given by setting variables in the command

line, or in the environment. Take a look to the table with the most popular variables:

Variable Description

MPICC MPI compiler.

CC C compiler command.

MPICC_FLAGSMPI compiler flags.

CFLAGS C compiler flags.

CC_FLAGS Also C compiler flags.

LDFLAGS Linker flags. E.g. ‘-L\’ if you have libraries in a nonstandard directory \.

LIBS Libraries to pass to the linker. E.g. ‘-l’.

EAR_TMP
Defines the node local storage as 'var', 'tmp' or other tempfs file system (default: /var/ear) (you

can alo use --localstatedir=DIR).

EAR_ETC
Defines the read-only single-machine data as 'etc' (default: EPREFIX/etc) (you can also use

--sharedstatedir=DIR).

MAN Defines the manual directory (default: PREFIX/man) (you can use also --mandir=DIR).

DOC Defines the documentation directory (default: PREFIX/doc) (you can use also --docdir=DIR).

MPI_VERSION
Adds a suffix to the compiled EAR library name. Read further down this page for more

information.

USER Owner user of the installed files.

GROUP Owned group of the installed files

This is an example of CC , CFLAGS  and DEBUG  variables overwriting:

./configure CC=icc CFLAGS=-g EAR_ETC=/hpc/opt/etc

You can choose the root folder by typing ./configure --PREFIX=<path> . But there are other options in the

following table:



Definition Default directoryContent / description

\<PREFIX> /usr/local Installation path

\<EAR_ETC>\<PREFIX>/etc Configuration files.

\<EAR_TMP>/var/ear Pipes and temporal files.

You have more installation options information by typing ./configure --help . If you want to change the

value of any of this options after the configuration process, you can edit the root Makefile. All the options are

at the top of the text and its names are self-explanatory.

ADDING REQUIRED LIBRARIES INSTALLED IN CUSTOM LOCATIONS

The configure  script is capable to find libraries located in custom location if a module is loaded in the

environment or its path is included in LD_LIBRARY_PATH . If not, you can help configure  to find SLURM, or

other required libraries in case you installed in a custom location. It is necessary to add its root path for the

compiler to see include headers and libraries for the linker. You can do this by adding to it the following

arguments:

Argument Description

--with-slurm=\<path> Specifies the path to SLURM installation.

--with-cuda=\<path> Specifies the path to CUDA installation.

--with-mysql=\<path>Specify path to MySQL installation.

--with-pgsql=\<path> Specify path to PostgreSQL installation.

--with-gsl=\<path> Specifies the path to GSL installation.

This is an example of CC  overwriting the CUDA path specification:

./configure --with-cuda=/path/to/CUDA

If unusual procedures must be done to compile the package, please try to figure out how configure  could

check whether to do them and contact the team to be considered for the next release. In the meantime, you

can overwrite shell variables or export its paths to the environment (e.g. LD_LIBRARY).

ADDITIONAL CONFIGURE FLAGS

Also, there are additional flags to help administrator increase the compatibility of EAR in nodes.

Argument Description

--disable-rpath Disables the RPATH included in binaries to specify some dependencies location.

--disable-avx512Replaces the AVX-512 function calls by AVX-2.

--disable-gpus The GPU monitoring data is not allocated nor inserted in the database.

Pre-installation fast tweaks

Some EAR characteristics can be modified by changing the value of the constants defined in src/common

/config/config_def.h . You can open it with an editor and modify those pre-procesor variables to alter the

EAR behaviour.

Also, you can quickly switch the user/group of your installation files by modifying the CHOWN_USR/CHOWN_GRP

variables in the root Makefile.

Library distributions/versions



As commented in the overview, the EAR library is loaded next to the user MPI application by the EAR Loader.

The library uses MPI symbols, so it is compiled by using the includes provided by your MPI distribution. The

selection of the library version is automatic in runtime, but in the compiling and installation process is not

required. Each compiled library has its own file name that has to be defined by the MPI_VERSION  variable

during ./configure  or by editing the root Makefile. The name list per distribution is exposed in the following

table:

DistributionName MPI_VERSION variable

Intel MPI libear.so (default)it is not required

MVAPICH libear.so (default)it is not required

OpenMPI libear.ompi.so ompi

If different MPI distributions shares the same library name, it means that its symbols are compatible between

them, so compiling and installing the library one time will be enough. However, if you provide different MPI

distributions to the users, you will have to compile and install the library multiple times.

Before compiling new libraries you have to install by typing make install . Then you can run the

./configure  again, changing the MPICC , MPICC_FLAGS  and MPI_VERSION  variables, or just opening the root

Makefile  and edit the same variables and MPI_BASE , which just sets the MPI installation root path. Now type

make full  to perform a clean compilation and make earl.install , to install only the new version of the

library.

If your MPI version is not fully compatible, please contact ear-support@bsc.es. We will add compatibility to

EAR and give you a solution in the meantime.

Other useful flags

You can install individual components by doing: make eard.install  to install EAR Daemon, make

earl.install  to install EAR Library, make eardbd.install  EAR Database Manager, make eargmd.install

EAR Global Manager and make commands.install  the EAR command binaries.

Installation content

This is the list of the inner installation folders and their content:

Root Directory Content / description

\<PREFIX> /lib Libraries.

\<PREFIX> /lib/pluginsPlugins.

\<PREFIX> /bin EAR commands.

\<PREFIX> /bin/tools EAR tools for coefficients.

\<PREFIX> /sbin Privileged components.

\<PREFIX> /man Documentation.

\<EAR_ETC>/ear Configuration file.

\<EAR_ETC>/ear/coeffsCoefficient files store.

\<EAR_ETC>/module EAR module.

\<EAR_ETC>/slurm ear.plugstack.conf.

\<EAR_ETC>/systemd EAR service files.



Fine grain tuning of EAR options

Some options such as the maximum number of CPUs or GPUs supported are defined in src/common/config

files. It is not recommended to modify these files but some options and default values can be set by modifying

them.

Next step

For a better overview of the installation process, return to our Quick installation guide. To continue the

installation, visit the configuration page to set up properly the EAR configuration file and the SLURMs plugin

stack file.

Requirements

EAR uses some third party libraries. EAR RPM will not ask for them when installing but they must be

available in LD_LIBRARY_PATH when running an application and you want to use EAR. Depending on the

RPM, different version must be required of this libraries:

Library Minimum versionReferences

SLURM 17.02.6 Website (https://slurm.schedmd.com/)

MPI - -

MySQL* 15.1 MySQL (https://mysql.com) or MariaDB (https://mariadb.org/)

PostgreSQL*9.2 PostgreSQL (https://www.postgresql.org/)

Autoconf 2.69 Website (https://www.gnu.org/software/autoconf/autoconf.html)

GSL 1.4 Website (https://www.gnu.org/software/gsl/)

(*) Just one of them required.

Also, some drivers has to be present and loaded in the system when starting EAR:

Driver File
Kernel

version
References

CPUFreq
kernel/drivers/cpufreq

/acpi-cpufreq.ko
3.10

Information (https://wiki.archlinux.org/index.php

/CPU_frequency_scaling)

Open

IPMI

kernel/drivers

/char/ipmi/*.ko
3.10

Information (https://docs.oracle.com/en/database/oracle/oracle-

database/12.2/cwlin/configuring-the-open-ipmi-driver.html)

Installation guide

1. Before the installation, make sure the installation path is accessible by all the computing nodes. Do the

same in the folder where you want to set the temporary files (it will be called $(EAR_TMP)  in this guide for

simplicity).

2. Default paths are /usr and /etc

3. Run rpm -ivh --relocate /usr=/new_install_path --relocate /etc=/new_etc_path ear.version.rpm .

You can also use the --nodeps  if your dependency test fails.

4. During the installation the configuration files *.in  are compiled to the ready to use version, replacing tags



for correct paths. You will have more information of those files in the following pages. Check the next

section for more information

5. To uninstall the RPM type rpm -e ear.version .

Installation content

Directory Content / description

/usr/lib Libraries

/usr/lib/pluginsPlugins

/usr/bin EAR commands

/usr/bin/tools EAR tools for coefficients

/usr/sbin Privileged components: EARD, EARDBD, EARGMD

/etc/ear Configuration file templates

/etc/ear/coeffs Folder to store coefficient files.

/etc/module EAR module.

/etc/slurm ear.plugstack.conf

/etc/systemd EAR service files

The *.in  configuration files are compiled into etc/ear/ear.conf.template  and etc/ear

/ear.full.conf.template , etc/module/ear , etc/slurm/ear.plugstack.conf  and various etc/systemd

/ear*.service . You can find more information in the next configuration section.

Next step

For a better overview of the installation process, return to our Quick installation guide. To continue the

installation, visit the configuration page to set up properly the EAR configuration file and the SLURMs plugin

stack file.

Configuration requirements

The following requirements must be met for EAR to work properly:



EAR folders: EAR uses two paths for EAR configuration.

EAR_TMP: tmp_ear_path must be a private folder per compute node. It must have read/write

permissions for normal users. Communication files are created here. It must be created by the admin.

For instance: mkdir /var/ear; chmod ugo +rwx /var/ear

EAR_ETC: etc_ear_path must be readable for normal users in all compute nodes. It can be a shared

folder in "GPFS" (simple to manage) or replicated data because it has very few data and it is modified at

a very low frequency (ear.conf and coefficients). Coefficients can be installed in a different path

specified at configure time in COEFFS flag. Both ear.conf and coefficients must be readable in all the

nodes (compute and “service” nodes).

Configure ear.conf: ear.conf is an ascii file setting default values and cluster descriptions. An ear.conf is

automatically generated based on a ear.conf.in template. However, sysadmin must include installation

details such as hostname details for EAR services, ports, default values, and list of nodes. For more details,

check EAR configuration file below.

MySQL DB or PostgreSQL DB: EAR saves data in a MySQL/PostgreSQL DB server. EAR DB can be

created using edb_create  command provided (MySQL/PostgreSQL server must be running and root

access to the DB is needed).

Set EAR SLURM plugin

EAR SLURM plugin must be set in /etc/slurm/plugstack.conf. EAR generates an example at

ear_etc_path/slurm/ear.plugstack.conf. For more information see our Plugin section down below.

EAR configuration file

ear.conf is a text file describing the EAR package behaviour in the cluster. It must be readable by all compute

nodes and by nodes where commands are executed. Two ear.conf templates are generated with default

values and will be installed as reference when executing make etc.install

Usually the first word in the configuration file expresses the component related with the option. Lines starting

with #  are comments.

A test for ear.conf file can be found in the path src/test/functionals/ear_conf .

In-depth EAR configuration file options

Database configuration



# The IP of the node where the MariaDB (MySQL) or PostgreSQL server process is running. Current version uses same 
DBIp=172.30.2.101
# Port in which the server accepts the connections.
DBPort=3306
# MariaDB user that the services will use. Needs INSERT/SELECT privileges. Used by EARDBD
DBUser=eardbd_user
# Password for the previous user. If left blank or commented it will assume the user has no password.
DBPassw=eardbd_pass
# Database user that the commands (eacct, ereport) will use. Only uses SELECT privileges.
DBCommandsUser=ear_commands
# Password for the previous user. If left blank or commented it will assume the user has no password.
DBCommandsPassw=commandspass
# Name of EAR's database in the server.
DBDatabase=EAR
# Maximum number of connections of the commands user to prevent server saturation/malicious actuation. Applies to 
DBMaxConnections=20
# The following specify the granularity of data reported to database.
# Extended node information reported to database (added: temperature, avg_freq, DRAM and PCK energy in power monit
DBReportNodeDetail=1
# Extended signature hardware counters reported to database.
DBReportSigDetail=1
# Set to 1 if you want Loop signatures to be reported to database.
DBReportLoops=1

EARD configuration. EARD are executed in compute nodes

# The port where the EARD will be listening.
NodeDaemonPort=50001
# Frequency used by power monitoring service, in seconds.
NodeDaemonPowermonFreq=60
# Maximum supported frequency (1 means nominal, no turbo).
NodeDaemonMaxPstate=1
# Enable (1) or disable (0) the turbo frequency.
NodeDaemonTurbo=0
# Enables the use of the database.
NodeUseDB=1
# Inserts data to MySQL by sending that data to the EARDBD (1) or directly (0).
NodeUseEARDBD=1
# '1' means EAR is controlling frequencies at all times (targeted to production systems) and 0 means EAR will not 
NodeDaemonForceFrequencies=1
# The verbosity level [0..4]
NodeDaemonVerbose=1
# When set to 1, the output is saved in '$EAR_TMP'/eard.log (common configuration) as a log file.Otherwsie, stderr
NodeUseLog=1
# Minimum time between two energy readings for performance accuracy
MinTimePerformanceAccuracy=10000000



EARDBD configuration

# Port where the EARDBD server is listening
DBDaemonPortTCP=50002
# Port where the EARDBD mirror is listening
DBDaemonPortSecTCP=50003
# Port is used to synchronize the server and mirror
DBDaemonSyncPort=50004
# In seconds, interval of time of accumulating data to generate an energy aggregation
DBDaemonAggregationTime=60
# In seconds, time between inserts of the buffered data
DBDaemonInsertionTime=30
# Memory allocated per process. This allocations is used for buffering the data sent to the database by EARD or ot
DBDaemonMemorySize=120
# When set to 1, eardbd uses a '$EAR_TMP'/eardbd.log file as a log file
DBDaemonUseLog=1

EARL configuration

# Path where coefficients are installed, usually $EAR_ETC/ear/coeffs
CoefficientsDir=/path/to/coeffs
# Number of levels used by DynAIS algorithm.
DynAISLevels=10
# Windows size used by DynAIS, the higher the size the higher the overhead.
DynAISWindowSize=200
# Maximum time in seconds that EAR will wait until a signature is computed. After this value, if no signature is c
DynaisTimeout=15
# Time in seconds to compute every application signature when the EAR goes to periodic mode.
LibraryPeriod=10
# Number of MPI calls whether EAR must go to periodic mode or not.
CheckEARModeEvery=1000

EARGM configuration



# The IP or hostname of the node where the EARGMD daemon is running.
EARGMHost=hostname
# Port where EARGMD will be listening.
EARGMPort=50000
# Use '1' or not '0' aggregated metrics to compute total energy.
EARGMUseAggregated=1
# Period T1 and period T2 are specified in seconds. T1 must be less than T2. Global manager updates the informatio
EARGMPeriodT1=90
EARGMPeriodT2=259200
# Units field, Can be '-' (Joules), 'K' KiloJoules or 'M' MegaJoules
EARGMUnits=K
# This limit means the maximum energy allowed in 259200 seconds in 550000 KJoules
EARGMEnergyLimit=550000
#
# Global manager modes. Two modes are supported '0' (manual) or '1' (automatic). Manual means Gobal Manager is onl
EARGMMode=0
# A mail can be sent reporting the warning level (and the action taken in automatic mode). 'nomail' means no mail 
EARGMMail=nomail
# Percentage of accumulated energy to start the warning DEFCON level L4, L3 and L2.
EARGMWarningsPerc=85,90,95
# Number of "grace" T1 periods before doing a new re-evaluation. After a warning, EARGM will wait T1xGlobalManager
EARGMGracePeriods=3
# Verbose level
EARGMVerbose=1
# When set to 1, the output is saved in '$EAR_TMP'/eargmd.log (common configuration) as a log file.
EARGMUseLog=1
# Format for action is: command_name energy_T1 energy_T2  energy_limit T2 T1  units "
# This action is automatically executed at each warning level (only once per grace periods)
EARGMEnergyAction=no_action
#### POWERCAP definition for EARGM: Powercap is still under development. Do not activate
# 0 means no powercap
EARGMPowerLimit=0

Common configuration



# Default verbose level
Verbose=0
# Path used for communication files, shared memory, etc. It must be PRIVATE per compute node and with read/write p
TmpDir=/tmp/ear
# Path where coefficients and configuration are stored. It must be readable in all compute nodes. $EAR_ETC
EtcDir=/path/to/etc
InstDir=/path/to/inst
# Path where metrics are generated in text files when no database is installed. A suffix is included.
DataBasePathName=/etc/ear/dbs/dbs.
# Energy reading plugin (without the extension). Allows to use different system components to read the energy of t
# look at /path/to/inst/lib/plugins/energy folder to see the list of installed energy plugins
Energy_plugin=energy_nm.so
# Power model plugin (without the extension). The power model plugin is used to predict the power and energy consu
Energy_model=avx512_model.so

EAR-Authorized users/groups/accounts

Authorized users that are allowed to change policies, thresholds and frequencies are supposed to be

administrators. A list of users, Linux groups, and/or SLURM accounts can be provided to allow normal users

to perform that actions. Only normal Authorized users can execute the learning phase.

AuthorizedUsers=user1,user2
AuthorizedAccounts=acc1,acc2,acc3
AuthorizedGroups=xx,yy

Energy tags

Energy tags are pre-defined configurations for some applications (EAR library is not loaded). This energy tags

accept a user ids, groups and SLURM accounts of users allowed to use that tag.

# General energy tag
EnergyTag=cpu-intensive pstate=1
# Energy tag with limited users
EnergyTag=memory-intensive pstate=4 users=user1,user2 groups=group1,group2 accounts=acc1,acc2

Tags

Tags are used for architectural descriptions. Max. AVX frequencies are used in predictor models and are

SKU-specific. At least a default tag is mandatory to be included for a cluster to work properly.

The min_power , max_power  and error_power  are threshold values that determine if the metrics read might

be invalid, and a warning message to syslog will be reported if the values are outside of said thresholds.

error_power  is a more extreme value that if a metric surpasses it, said metric will not be reported to

database.

A special energy plugin or energy model can be specified in a tag that will override the global values



previously defined in all nodes that have this tag associated with them.

Tag=6148 default=yes max_avx512=2.2 max_avx2=2.6 max_power=500 min_power=50 error_power=600 coeffs=coeffs.default 
Tag=6126 max_avx512=2.3 max_avx2=2.9 ceffs=coeffs.6126.default max_power=600 error_power=700

Power policies plugins

#---------------------------------------------------------------------------------------------------
## Power policies
## ---------------------------------------------------------------------------------------------------
#
## policy names must be exactly file names for policies installeled in the system
DefaultPowerPolicy=monitoring
Policy=monitoring Settings=0 DefaultFreq=2.4 Privileged=0
Policy=min_time Settings=0.7 DefaultFreq=2.0 Privileged=0
Policy=min_energy Settings=0.05 DefaultFreq=2.4 Privileged=1

# For homogeneous systems, default frequencies can be easily specified using freqs, for heterogeneous systems it i

# Example with pstates (lower pstates corresponds with higher frequencies). Pstate=1 is nominal and 0 is turbo
#Policy=monitoring Settings=0 DefaultPstate=1 Privileged=0
#Policy=min_time Settings=0.7 DefaultPstate=4 Privileged=0
#Policy=min_energy Settings=0.05 DefaultPstate=1 Privileged=1

Island description

This section is mandatory since it is used for cluster description. Normally nodes are grouped in islands that

share the same hardware characteristics as well as its database managers (EARDBDS). Each entry

describes part of an island, and every node must be in an island.

There are two kinds of database daemons. One called 'server' and other one called 'mirror'. Both performs the

metrics buffering process, but just one performs the insert. The mirror will do that insert in case the 'server'

process crashes or the node fails.

It is recommended for all islands to have maintain server-mirror symmetry. For example, if the island I0 and I1

have the server N0 and the mirror N1, the next island would have to point the same N0 and N1 or point to

new ones N2 and N3, not point to N1 as server and N0 as mirror.

Multiple EARDBDs are supported in the same island, so more than one line per island is required, but the

condition of symmetry have to be met.

It is recommended that for an island the server and the mirror to be running in different nodes. However, the

EARDBD program could be both server and mirror at the same time. This means that the islands I0 and I1

could have the N0 server and the N2 mirror, and the islands I2 and I3 the N2 server and N0 mirror, fulfilling

the symmetry requirements.

A tag can be specified that will apply to all the nodes in that line. If no tag is defined, the default one will be

used as hardware definition.



#
# In the following example the nodes are clustered in two different islands, but the Island 1 have
# two types of EARDBDs configurations. 
#

Island=0 DBIP=node1081 DBSECIP=node1082 Nodes=node10[01-80]

# These nodes are in island0 using different DB connections and with a different architecture
Island=0 DBIP=node1084 DBSECIP=node1085 Nodes=node11[01-80] DBSECIP=node1085 tag=6126
# These nodes are in island0 and will use default values for DB connection (line 0 for island0) and default tag
Island=0 Nodes=node12[01-80]

# Will use default tag 
Island=1 DBIP=node1181 DBSECIP=node1182 Nodes=node11[01-80]

Detailed island accepted values:

nodename_list accepts the following formats:

Nodes= node1,node2,node3

Nodes= node[1-3]

Nodes= node[1,2,3]

Any combination of the two latter options will work, but if nodes have to be specified individually (the first

format) as of now they have to be specified in their own line. As an example:

Valid formats:

Island=1 Nodes= node1,node2,node3

Island=1 Nodes= node[1-3],node[4,5]

Invalid formats:

Island=1 Nodes= node[1,2],node3

Island=1 Nodes= node[1-3],node4

SLURM spank plugin configuration file

SLURM loads the plugin through a file called plugstack.conf , which is composed by a list of a plugins. In

the file etc/slurm/ear.plugstack.conf , there is an example entry with the paths already set to the plugin,

temporal and configuration paths.

Example:

required ear_install_path/lib/earplug.so  prefix=ear_install_path sysconfdir=etc_ear_path localstatedir=tmp_ear_pa

The argument prefix  points to the EAR installation path and it is used to load the library using LD_PRELOAD

mechanism. Also the localstatedir  is used to contact with the EARD, which by default points the path you

set during the ./configure  using --localstatedir  or EAR_TMP  arguments. Next to these fields, there is the

field earlib_default=off , which means that by default EARL is not loaded. Finally there are eargmd_host

and eargmd_port  if you plan to connect with the EARGMD component (you can leave this empty).

Also, there are two additional arguments. The first one, nodes_allowed=  followed by a comma separated list



of nodes, enables the plugin only in that nodes. The second, nodes_excluded= , also followed by a comma

separated list of nodes, disables the plugin only in nodes in the list. These are arguments for very specific

configurations that must be used with caution, if they are not used it is better that they are not written.

Example:

required ear_install_path/lib/earplug.so  prefix=ear_install_path sysconfdir=etc_ear_path localstatedir=tmp_ear_pa

MySQL/PostgreSQL

WARNING: If any EAR component is running in the same machine as the MySQL server some connection

problems might occur. This will not happen with PostgreSQL. To solve those issues, input into MySQL's CLI

client the CREATE USER  and GRANT PRIVILEGES  queries from edb_create -o  changing the portion

'user_name'@'%'  to 'user_name'@'localhost'  so that EAR's users have access to the server from the local

machine. There are two ways to configure a database server for EAR's usage.

run edb_create -r  located in $EAR_INSTALLATION_PATH/sbin  from a node with root access to the MySQL

server. This requires MySQL/PostgreSQL's section of ear.conf to be correctly written. For more info run

edb_create -h .

Manually create the database and users specified in ear.conf, as well as the required tables. If ear.conf has

been configured, running edb_create -o  will output the queries that would be run with the program that

contain all that is needed for EAR to properly function.

For more information about how each ear.conf  flag changes the database creation, see our Database

section.

Next step

Visit the execution page to run EAR's different components.

Tools list

Name Description Basic arguments

coeffs_computeComputes the learning coefficients
<save.path> <min.frequency>

<node.name>

coeffs_default Computes a default coefficients file

coeffs_null
Created a dummy configuration file to be used by

EARD
coeff_path, max.freq min.freq

coeffs_show Shows the computed coefficients file in text format <file.path>

Use the argument --help  to expand the application information and list the admitted flags.

Examples

Compute the coefficients for the node node1001  in which the minimum frequency set during the learning

phase was 1900000 KHz

./coeffs_compute /etc/coeffs 1900000 node1001



This is a necessary phase prior to the normal EAR utilization and is a kind of hardware characterization of the

nodes. During the phase a matrix of coefficients are calculated and stored. These coefficients will be used to

predict the energy consumption and performance of each application.

Please, visit the learning phase wiki page (https://gitlab.bsc.es/ear_team/ear_learning/-/wikis/home) to read

the manual and the repository (https://gitlab.bsc.es/ear_team/ear_learning) to get the scripts and the kernels.

EAR plug-ins

Some of the core of EAR functionality can be dynamically loaded through a plug-in mechanism, making EAR

more extensible and dynamic than previous version since it is not needed to reinstall the system to add , for

instance, a new policy or a new power model. It is only needed to copy the file in the $EAR_INSTALL_PATH/lib

/plugin  folder and restart some components. The three parts that can be loaded as plug-ins are: the node

energy reading library, the power policy, the power model and the tracing.

Plug-in Description

Power model
It is used to predict the energy consumption given a target frequency and the current state

metrics.

Power policies
Defines the behaviour of EAR to switch between frequencies given energy readings and

predictions.

Energy

readings
It is used to read the energy of the node.

Tracing
EAR library data and internal states changes are exported to the tracing library in case it is

specified.

Considerations

Plug-in paths is set by default to $EAR_INSTALL_PATH/lib/plugin .

Default power model library is specified in ear.conf  (energy_model option). By default EAR includes a

basic_model.so  and avx512_model.so  plug-ins.

The node energy readings library is specified in ear.conf  in the energy_plugin option. Three libraries are

included: energy_nm.so  (uses Intel NodeManager IPMI commands), energy_rapl.so  (uses a node energy

estimation based on DRAM and PACKAGE energy provided by RAPL), and energy_sd650.so  (uses the

high frequency IPMI hardware included in Lenovo SD650 systems).

Power policies included in EAR are: monitoring.so , min_energy.so , min_time.so ,

min_energy_no_models.so  and min_time_no_models.so . The list of policies installed is automatically

detected by the EAR plug-in. However, only policies included in ear.conf  can be used.

The tracing is an optional functionality. It is included to provide additional information or to generate runtime

information.

Note: SLURM Plugin does not fit in this philosophy, it is a core component of EAR and can not be replaced by

any third party development.

EAR is composed of five main components:



Node Manager (EARD)

Database Manager (EARDBD)

Global Manager (EARGM)

Library (EARL)

Loader (EARLO)

SLURM plugin

The following image shows the main interactions between components:

Node Manager

EAR's daemon is a per-node process that provides privileged metrics of each node as well as a periodic

power monitoring service. Said periodic power metrics are sent to EAR's database either directly or via the

database daemon (see configuration page).

For more information, see EARD.

Database Manager

The database daemon acts as an intermediate layer between any EAR component that inserts data and the

EAR's database, in order to prevent the database server from collapsing due to getting overrun with

connections and insert queries.

For more information, see EARDBD.

Global Manager

EAR's Global Manager Daemon (EARGMD) is a cluster wide component that controls the percentage of the

maximum energy consumed.



For more information, see EARGM.

Library

The EAR library is the core of the EAR package. The EARL offers a lightweight and simple solution to select

the optimal frequency for MPI applications at runtime, with multiple power policies each with a different

approach to find said frequency. EARL uses the daemon to read performance metrics and to send application

data to EAR's database.

For more information, see EARL.

Loader

EAR Loader is the responsible for loading the EAR Library. It is a small and lightweight library loaded by the

SLURM Plugin, that identifies the user application and loads its corresponding EAR Library distribution.

For more information, see EARLO.

SLURM Plugin

EAR SLURM plugin allows to dynamically load and configure the EAR library for the SLURM jobs, if the

enabling argument is set or is enabled by default. Additionally, it reports any jobs that start or end to the

nodes' EARDs for accounting and monitoring purposes.

For more information, see SLURM Plugin.

EARD: Node Manager

The node daemon is the component in charge of providing any kind of services that requires privileged

capabilities. Current version is conceived as an external process executed with root privileges.

The EARD provides the following services, each one covered by one thread:

Provides privileged metrics to EARL such as the average frequency, uncore integrated memory controller

counters to compute the memory bandwidth, as well as energy metrics (DC node, DRAM and package

energy).

Implements a periodic power monitoring service. This service allows EAR package to control the total

energy consumed in the system.

Offers a remote API used by EARplug, EARGM and EAR commands. This API accepts requests such as

get the system status, change policy settings or notify new job/end job events.

Requirements

When executed in production environments, EARD connects with EARDBD service, that has to be up before

starting the node daemon, otherwise values reported by EARD to be stored in the database, will be lost.



Configuration

The EAR Daemon uses the $(EAR_ETC)/ear/ear.conf  file to be configured. It can be dynamically configured

by reloading the service.

Please visit the EAR configuration file page for more information about the options of EARD and other

components.

Execution

To execute this component, these systemctl  command examples are provided:

sudo systemctl start eard  to start the EARD service.

sudo systemctl stop eard  to stop the EARD service.

sudo systemctl reload eard  to force reloading the configuration of the EARD service.

Log messages are generated during the execution. Use journalctl  command to see eard message:

sudo journalctl -u eard -f

Reconfiguration

After executing a systemctl reload eard  command, not all the EARD options will be dynamically updated.

The list of updated variables are:

DefaultPstates
NodeDaemonMaxPstate
NodeDaemonVerbose
NodeDaemonPowermonFreq
SupportedPolicies
MinTimePerformanceAccuracy

To reconfigure other options such as EARD connection port, coefficients, etc., it must be stopped and

restarted again.

EARDBD: Database Manager

EARDBD caches records generated by the EARL and EARD in the system and reports it to the centralized

database. It is recommended to run several EARDBDs if the cluster is big enough in order to reduce the

number of inserts and connections to the database.

Also, EARDBD accumulates data during a period of time to decrease the total insertions in the database,

helping the performance of big queries. By now just the energy metrics are available to accumulate in the new

metric called energy aggregation. EARDBD uses periodic power metrics sent by EARD, the per-node

daemon, including job identification details (job id and step id when executed in a SLURM system).



Configuration

The EAR Database Daemon uses the $(EAR_ETC)/ear/ear.conf  file to be configured. It can be dynamically

configured by reloading the service.

Please visit the EAR configuration file page for more information about the options of EARDBD and other

components.

Execution

To execute this component, these systemctl  command examples are provided:

sudo systemctl start eardbd  to start the EARDBD service.

sudo systemctl stop eardbd  to stop the EARDBD service.

sudo systemctl reload eardbd  to force reloading the configuration of the EARDBD service.

EARGM: Global Manager

EARGM is a cluster wide component offering cluster energy monitoring and capping. EARGM can work in two

modes: manual and automatic. When running in manual mode, EARGM monitors the total energy

consumption, evaluates the percentage of energy consumption over the energy limit set by the admin and

reports the cluster status to the DB. When running in automatic mode, apart from evaluating the energy

consumption percentage it sends the evaluation to computing nodes. EARDs passes these messages to

EARL which re-applies the energy policy with the new settings.

Apart from sending messages and reporting the energy consumption to the DB, EARGM offers additional

features to notify the energy consumption: automatic execution of commands is supported and mails can also

automatically be sent. Both the command to be executed or the mail address can be defined in the

ear.conf , where it can also be specified the energy limits, the monitoring period, etc.

EARGM uses periodic aggregated power metrics to efficiently compute the cluster energy consumption.

Aggregated metrics are computed by EARDBD based on power metrics reported by EARD, the per-node

daemon.

Configuration

The EAR Global Manager uses the $(EAR_ETC)/ear/ear.conf  file to be configured. It can be dynamically

configured by reloading the service.

Please visit the EAR configuration file page for more information about the options of EARGM and other

components.

Execution

To execute this component, these systemctl  command examples are provided:



sudo systemctl start eargmd  to start the EARGM service.

sudo systemctl stop eargmd  to stop the EARGM service.

sudo systemctl reload eargmd  to force reloading the configuration of the EARGM service.

EAR Library

The EAR library is the core of the EAR package. The EARL offers a lightweight and simple solution to select

the optional frequency for MPI applications at runtime.

EARL is dynamically loaded next to the running applications by the EAR Loader. Loader intercepts the MPI

calls through the PMPI interface, and then calls its respective PMPI function included in the library, which

handles the operations. At runtime, EARL goes through the following phases:

1. Automatic detection of application outer loops. This is done by intercepting MPI calls and invoking the

Dynamic Application Iterative Structure detector algorithm. DynAIS is highly optimized for new Intel

architectures, reporting low overhead.

2. Computation of the application signature. Once DynAIS starts reporting iterations for the outer loop,

EAR starts to compute the application signature. This signature includes: iteration time, DC power

consumption, bandwidth, cycles, instructions, etc. Since the DC power measurements error highly

depends on the hardware, EAR automatically detects the hardware characteristics and sets a minimum

time to compute the signature in order to minimize the average error.

3. Power and performance projection. EAR has its own performance and power models which requires the

application and the system signatures as an input. The system signature is a set of coefficients

characterizing each node in the system. They are computed during the learning phase at the EAR

configuration step. EAR projects the power used and computing time (performance) of the running

application for all the available frequencies in the system.



4. Apply the selected power policy. EAR includes two power policies to be selected at runtime: minimize time

to solution and minimize energy to solution, if permitted by the system administrator. At this point, EAR

executes the power policy, using the projections computed in the previous phase, and selects the optimal

frequency for an application and its particular run. An additional policy, monitoring only can also be used,

but in this case no changes to the running frequency will be made but only the computation and storage of

the application signature and metrics will be done.

Configuration

The EAR Library uses the $(EAR_ETC)/ear.conf  file to be configured. Please visit the EAR configuration file

page for more information about the options of EARL and other components.

The library receives its specific settings through a shared memory regions initialized by EARD.

How to run MPI applications with EARL

For information on how to run applications alongside with EARL see our User guides section about it, as well

as the Policies page.

EAR Loader configuration guide

Loader is a lightweight and small library loaded by the SLURM Plugin, using the LD_PRELOAD  environment

variable, while executing the user application. Loader detects the underlying application, identifying the MPI

version if used and other minor details. With this information, loader opens the suitable EAR Library. As can

be read in the EARL page, depending on the MPI vendor, the MPI types can be different, preventing any

compatibility between distributions. In example, if the MPI distribution is OpenMPI, the EAR Loader will load

the EAR Library compiled with the OpenMPI includes.

SLURM plugin configuration guide

EAR SLURM plugin allows to dynamically load the EAR Loader for the SLURM jobs (and setpid), if the

enabling argument is set or if is enabled by default. The Loader will be executed in each job step, intercepting

all MPI calls and passing this information to the EAR Library.

Configuration

Visit the configuration page to set up properly the SLURM /etc/slurm/plugstack.conf  file.



You can find the complete EAR SLURM Plugin parameter in the user guide.

Tables

EAR's database consists of the following tables:

Jobs: job information (app_id, user_id, job_id, step_id, etc). One record per JOBID.STEPID is created in

the DB.

Applications: this table's records serve as a link between Jobs and Signatures, providing an application

signature (from EARL) for each node of a job. One record per JOBID.STEPID.NODENAME is created in the

DB.

Signatures: EARL computed signature and metrics. One record per JOBID.STEPID.NODENAME is

created in the DB when the application is executed with EARL.

Periodic_metrics: node metrics reported every N seconds (N is defined in ear.conf ).

Periodic_aggregations: sum of all Periodic_metrics in a time period to ease accounting in ereport

command and EARGM, as well as reducing database size (Periodic_metrics of older periods where

precision at node level is not needed can be deleted and the aggregations can be used instead).

Loops: similar to Applications, but stores a Signature for each application loop detected by EARL, instead

of one per each application. This table provides internal details of running applications and could

significantly increase the DB size.

Events: EARL events report. Events includes frequency changes, and internal EARL decisions such as

turning off the DynAIS algorithm.

Global_energy: contains reports of cluster-wide energy accounting set by EARGM using the parameters in

ear.conf . One record every T1 period (defined at ear.conf) is reported.

Power_signatures: Basic time and power metrics that can be obtained without EARL. Reported for all

applications. One record per JOBID.STEPID.NODENAME is created in the DB.

Learning_applications: same as Applications, restricted to learning phase applications.

Learning_jobs: same as Jobs, restricted to learning phase jobs.

Learning_signatures: same as Signatures, restricted to learning phase job metrics.

If GPUs are enabled at database creation (or are added afterwards, see Updating from previous versions),

Periodic_metrics will also contain GPU data and a new table GPU_signatures will be created, containing all

GPU metrics for every application that runs with EARL.

Database creation and ear.conf

When running edb_create  some tables might not be created, or may have some quirks, depending on some

ear.conf  settings. The settings and alterations are as follows:

DBReportNodeDetail : if set to 1, edb_create  will create two additional columns in the Periodic_metrics

table for Temperature (in Celsius) and Frequency (in Hz) accounting.

DBReportSigDetail : if set to 1, Signatures will have additional fields for cycles, instructions, and FLOPS1-8

counters (number of instruction by type).

DBMaxConnections : this will restrict the number of maximum simultaneous commands connections.

If any of the settings is set to 0, the table will have fewer details but the table's records will be smaller in

stored size.



Any table with missing columns can be later altered by the admin to include said columns. For a full detail of

each table's columns, run edb_create -o  with the desired ear.conf  settings.

Information reported and ear.conf

There are various settings in ear.conf  that restrict data reported to the database and some errors might

occur if the database configuration is different from EARDB's.

DBReportNodeDetail : if set to 1, node managers will report temperature, average frequency, DRAM and

PCK energy to the database manager, which will try to insert it to Periodic_metrics. If Periodic_metrics

does not have the columns for both metrics, an error will occur and nothing will be inserted. To solve the

error, set ReportNodeDetail  to 0 or manually update Periodic_metrics in order to have the necessary

columns.

DBReportSigDetail : similarly to ReportNodeDetail , an error will occur if the configuration differs from the

one used when creating the database.

DBReportLoops  : if set to 1, EARL detected application loops will be reported to the database, each with

its corresponding Signature. Set to 0 to disable this feature. Regardless of the setting, no error should

occur.

If Signatures and/or Periodic_metrics have additional columns but their respective settings are set to 0, a

NULL will be set in those additional columns, which will make those rows smaller in size (but bigger than if the

columns did not exist).



Updating from previous versions

From EAR 3.4 to 4.0

Several fields have to be added in this update. To do so, run the following commands to the database's CLI

client:

ALTER TABLE Signatures ADD COLUMN avg_imc_f BIGINT unsigned AFTER avg_f;
ALTER TABLE Signatures ADD COLUMN perc_MPI DOUBLE AFTER time;
ALTER TABLE Signatures ADD COLUMN IO_MBS DOUBLE AFTER GBS;

ALTER TABLE Learning_signatures ADD COLUMN avg_imc_f BIGINT unsigned AFTER avg_f;
ALTER TABLE Learning_signatures ADD COLUMN perc_MPI DOUBLE AFTER time;
ALTER TABLE Learning_signatures ADD COLUMN IO_MBS DOUBLE AFTER GBS;

From EAR 3.3 to 3.4

If no GPUs were used and they will not be used there are no changes necessary.

If GPUs were being used, type the following commands to the database's CLI client:

ALTER TABLE Signatures ADD COLUMN min_GPU_sig_id INT unsigned, ADD COLUMN max_GPU_sig_id INT unsigned
ALTER TABLE Learning_signatures ADD COLUMN min_GPU_sig_id INT unsigned, ADD COLUMN max_GPU_sig_id 
CREATE TABLE IF NOT EXISTS GPU_signatures ( id INT unsigned NOT NULL AUTO_INCREMENT, GPU_power 

If no GPUs were being used but now are present, use the previous query plus the following one:

ALTER TABLE Periodic_metrics ADD COLUMN GPU_energy INT;

CPU Models supported

Intel Haswell/Skylake monitoring and optimization.

AMD EPYC Rome monitoring.

GPU models supported

NVIDIA: Node and application monitoring.

Schedulers supported



EAR offers a SLURM SPANK plugin to be transparently used when using SLURM workload manager. This

plug-in allows to be integrated as part of the SLURM submission options. See the user guide.

Using the EARD api new_job/end_job functions EAR can be also be transparently used with other

schedulers such as LSF or PBS through the prolog/epilog mechanism.

CHANGELOG

EAR 4.0

AMD virtual p-states support and DF frequency management included

AMD optimization based on min_energy and min_time

GPU optimization in low GPU utilization phases

Application phases IO/MPI/Computation detection included

Node powercap and cluster powercap implemented: Intel CPU and NVIDIA GPUS tested. Meta EAR-GM

not released

IO, Percentage of MPI and Uncore frequency reported to DB and included in eacct

econtrol extensions for EAR health-check

EAR 3.4

Automatic loading of EAR library for MPI applications (already in 3.3), OpenMP, MKL and CUDA

applications. Programming model detection is based on dynamic symbols so it could not work if symbols

are statically included.

AMD monitoring support.

TAGS support included in policies.

Request dynamic in eard_rapi.

GPU monitoring support in EAR library for NVIDIA devices.

Node powercap and cluster power cap under development.

papi dependency removed.

EAR 3.3

eacct loop signature reported.

EAR loader included.

GPU support migrated to nvml API.

GPU support in configure.

TAGS supported in ear.conf.

Heterogeneous clusters specification supported.

EARGM energy capping management improved.

Internal messaging protocol improved.

Average CPU frequency and Average IMC frequency computation improved.

EAR 3.2



GPU monitoring based on nvidia-smi command.

GPU power reported to the DB using NVIDIA commands.

Postgresql support.

freeipmi dependence removed.

FAQS when using EAR flags with SLURM plugin

1) How to see EAR configuration and metrics at runtime? use –-ear-verbose=1 .

2) User authorized “issues”. The following list of ear flags are only allowed to Authorized users ( ear.conf ):

ear-cpufreq, ear-tag, ear-learning, ear-policy-th .

Action: Check ear option and user authorization (ear.conf).

AuthorizedUsers=user1,user2
AuthorizedAccounts=acc1,acc2,acc3
AuthorizedGroups=xx,yy

If user is not authorized it means it is the expected result.

3) Why is a different energy policy other than the selected one being applied (validated with --ear-

verbose=1 )? The selected policy may not be enabled for all users. Energy policies can be configured to be

enabled to all users or not.

Action: Check policy configuration (ear.conf) and user authorization (ear.conf).

#Enabled to all users
Policy=monitoring Settings=0 DefaultFreq=2.4 Privileged=0
#Enabled to authorized users
Policy=monitoring Settings=0 DefaultFreq=2.4 Privileged=1

If not enabled or not authorized it is the expected result.

4) How to disable EAR library explicitly: use –ear=off .

5) How to apply EAR settings to all srun/mpirun calls inside a job? Set options in #SBATCH  headers.

#!/bin/bash
#SBATCH -N 1
#SBATCH –ear-policy=min_time
#application 1 and 2 will run with min_time
srun application1
srun application2

6) How to apply different EAR settings to different srun/mpirun calls inside a job? Set options for each step

id.

srun –ear-policy=min_time application
srun –ear-policy=min_energy application



7) How to see which energy policies are installed? srun --help

Comment: Installed policies, it is possible a user is not allowed to run it.

8) How to set EAR flags with mpirun (intel)? Depending on the intel mpi version. Before version 2019,

mpirun had 2 parameters to specify slurm options.

mpirun –bootstrap=slurm -bootstrap-exec-args=”—ear-verbose=1”

Since version 2019, SLURM options must be specified using environment variables:

export I_MPI_HYDRA_BOOTSTRAP=slurm
export I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS --ear-verbose=1"

9) How to set EAR flags with mpirun (openmpi)? OpenMPI needs an extra support when srun is not used.

EAR's erun command must be used.

mpirun erun –ear-policy=min_energy --program=application 

10) An application is using OpenMPI and it blocks when running with EARL and mpirun: Use erun.

11) An application works without EAR (--ear=off) and fails with EARL reporting errors related with dynamic

libraries:

Action: Check if the application is using right EAR mpi version. If environment variable is set in mpi modules,

it must be automatic. Otherwise, validate whether --ear-mpi-dist  is present when needed.

12) How to collect more detailed metrics than available in the DB. Use --ear-user-db  flag to generate csv

files with all EARL collected metrics.

13) How to collect paraver traces? Use the environment variables to enable the trace collection and to specify

the path.

SLURM_EAR_TRACE_PLUGIN$EAR_INSTALL_PATH/lib/plugins/tracer/tracer_paraver.so
SLURM_EAR_TRACE_PATH=TRACES_PARAVER/

14) User asks for application metrics with eacct and NO-EARL appears in some of the columns in the output:

This means EARL was not loaded with the application or the application fails before MPI_Finalize, nor

reporting application data

Action: Check if application was executed with EARL and it didn’t fail.

15) After some time, user asks for an application metrics with eacct and application is not reported.

Action: Try again after some minutes (applications are not reported immediately).


