
EAR4.1 guide
Energy Aware Runtime

Contents
1 Introduction 3

1.1 License . 3
1.2 Publications . 4

2 User guide 4
2.1 Running jobs with EAR . 4
2.2 Use cases . 4

2.2.1 MPI applications . 4
2.2.2 Hybrid MPI + (OpenMP, CUDA, MKL) applications . . 4
2.2.3 Python (not MPI) . 5
2.2.4 Python + MPI applications 5
2.2.5 OpenMP, CUDA, MK (non-MPI) applications 5
2.2.6 Other application types or frameworks 5

2.3 MPI + srun . 5
2.3.1 EAR job submission flags 6
2.3.2 CPU frequency selection 6
2.3.3 GPU frequency selection 7

2.4 MPI + mpirun . 7
2.4.1 Intel MPI . 7
2.4.2 OpenMPI . 7
2.4.3 MPI4PY . 7
2.4.4 Using additional MPI profiling libraries/tools 8

2.5 Examples . 8
2.5.1 sbatch + EARL + srun 9
2.5.2 EARL + mpirun . 9
2.5.3 erun . 10

2.6 Job accounting (eacct) . 11
2.6.1 eacct usage examples . 11

2.7 Jobs executed without the EAR library: Basic Job accounting . . 12

3 Admin guide 13
3.1 EAR Components . 13
3.2 Quick Installation Guide . 13

1

CONTENTS CONTENTS

3.2.1 EAR Requirements . 13
3.2.2 Compiling and installing EAR 14
3.2.3 Deployment and validation 15
3.2.4 EAR Library versions: MPI vs. Non-MPI 18

3.3 Installing from RPM . 19
3.3.1 Installation content . 20

3.4 Next steps . 20
3.5 Architecture . 20

3.5.1 EARD: Node Manager . 20
3.5.2 EARDBD: Database Manager 21
3.5.3 EARGMD: Global Manager 21
3.5.4 EARL: The EAR Library 21
3.5.5 EARLo: EAR Loader . 21
3.5.6 EAR SLURM plugin . 21

3.6 Installation from source . 22
3.6.1 Requirements . 22
3.6.2 Compilation and installation guide summary 23
3.6.3 Configure options . 23
3.6.4 Adding required libraries installed in custom locations . . 24
3.6.5 Additional configure flags 25
3.6.6 Pre-installation fast tweaks 25
3.6.7 Library distributions/versions 25
3.6.8 Other useful flags . 26
3.6.9 Installation content . 26
3.6.10 Fine grain tuning of EAR options 27
3.6.11 Next step . 27

3.7 Configuration . 27
3.7.1 Configuration requirements 27
3.7.2 EAR configuration file . 28
3.7.3 SLURM SPANK plug-in configuration file 35
3.7.4 MySQL/PostgreSQL . 35
3.7.5 MSR Safe . 36
3.7.6 Examples . 37
3.7.7 Considerations . 38
3.7.8 Considerations . 39

3.8 DB Tables . 39
3.9 Database creation and ear.conf 40
3.10 Information reported and ear.conf 41
3.11 Updating from previous versions 41

3.11.1 From EAR 3.4 to 4.0 . 41
3.11.2 From EAR 3.3 to 3.4 . 41

4 Architectures and schedulers supported” 42
4.1 CPU Models . 42
4.2 GPU models . 42
4.3 Schedulers . 42

2 2

1 INTRODUCTION

5 Changelog 42
5.1 EAR 4.1 . 42
5.2 EAR 4.0 . 43
5.3 EAR 3.4 . 43
5.4 EAR 3.3 . 43
5.5 EAR 3.2 . 44

6 FAQS when using EAR flags with SLURM plugin 44

7 Known issues 46

1 Introduction

Energy Aware Runtime (EAR) package provides an energy management frame-
work for super computers. EAR contains different components, all together
provide three main services:

1. An easy-to-use and lightweight optimization service to automati-
cally select the optimal CPU frequency according to the application and
the node characteristics. This service is provided by two components: the
EAR library (EARL) and the EAR daemon (EARD). EARL is a smart
component which is loaded next to the application, intercepting MPI calls
and selecting the CPU frequency based on the application behaviour on
the fly. The library is loaded automatically through the EAR Loader
(EARLO) and SLURM plugin (EARPLUG).

2. A complete energy and performance accounting and monitor-
ing system based on SQL database (MariaDB and PostgreSQL are
supported). The energy accounting system is configurable in terms of
application details and update frequency. The EAR database daemon
(EARDBD) is used to cache those metrics prior to DB insertions.

3. A global energy management to monitor and control the energy
consumed in the system through the EAR global manager daemon
(EARGMD). This control is configurable, it can dynamically adapt
policy settings based on global energy limits or just offer global cluster
monitoring.

Visit the architecture page for a detailed description of each of these components.

1.1 License

EAR is an open source software and it is licensed under both the BSD-3 license
for individual/non-commercial use and EPL-1.0 license for commercial use. Full
text of both licenses can be found in COPYING.BSD and COPYING.EPL files.

Contact: ear-support@bsc.es

3 3

mailto:ear-support@bsc.es

1.2 Publications 2 USER GUIDE

1.2 Publications

J. Corbalan, L. Alonso, J. Aneas and L. Brochard, “Energy Optimization and
Analysis with EAR,” 2020 IEEE International Conference on Cluster Comput-
ing (CLUSTER), 2020, pp. 464-472, doi: 10.1109/CLUSTER49012.2020.00067.

J. Corbalan, O. Vidal, L. Alonso and J. Aneas, “Explicit uncore frequency scal-
ing for energy optimisation policies with EAR in Intel architectures,” 2021 IEEE
International Conference on Cluster Computing (CLUSTER), 2021, pp. 572-581,
doi: 10.1109/Cluster48925.2021.00089.

[[TOC]]

2 User guide

2.1 Running jobs with EAR

With EAR’s SLURM plugin, running an application with EAR is as easy as
submitting a job with either srun, sbatch or mpirun. The EAR Library is
automatically loaded with some applications when EAR is enabled by default.

You can type ear-info to see whether EAR is turned on by default. For
other schedulers, a simple prolog/epilog command can be created to provide
transparent job submission with EAR and default configuration.

2.2 Use cases

2.2.1 MPI applications

EAR Library is automatically loaded with MPI applications when EAR is
enabled by default (check ear-info). EAR supports the utilization of both
mpirun/mpiexec and srun commands.

When using sbacth/srun or salloc, Intel MPI and OpenMPI are fully sup-
ported. When using specific MPI flavour commands to start applications (e.g.,
mpirun, mpiexec.hydra), there are some keypoints which you must take ac-
count. See next sections for examples and more details.

2.2.2 Hybrid MPI + (OpenMP, CUDA, MKL) applications

EAR Library automatically supports this use case. Check with the ear-info
command if EAR library is on/off by default. If it’s off, use --ear=on option
offered by EAR SLURM plugin to enable it. mpirun/mpiexec and srun are
supported in the same manner as explained above.

4 4

https://ieeexplore.ieee.org/document/9229570
https://ieeexplore.ieee.org/document/9229570
https://ieeexplore.ieee.org/document/9229570
https://ieeexplore.ieee.org/document/9555970
https://ieeexplore.ieee.org/document/9555970
https://ieeexplore.ieee.org/document/9555970
https://ieeexplore.ieee.org/document/9555970

2.3 MPI + srun 2 USER GUIDE

2.2.3 Python (not MPI)

EAR version 4.1 automatically executes the EAR Library with Python appli-
cations, so no action is needed. Check with the ear-info command if EAR
library is on/off by default. If it’s off, use --ear=on option offered by EAR
SLURM plugin to enable it.

2.2.4 Python + MPI applications

EAR Library cannot detect automatically MPI symbols when Python is used.
On that case, an environment variable used to specify which MPI flavour is pro-
vided. Export SLURM_EAR_LOAD_MPI_VERSION environment variable with either
intel or open mpi values, e.g., export SLURM_EAR_LOAD_MPI_VERSION="open
mpi", whose are the two MPI implementations 100% supported by EAR.

Check with the ear-info command if EAR library is on/off by default. If it’s
off, use --ear=on option offered by EAR SLURM plugin to enable it.

2.2.5 OpenMP, CUDA, MK (non-MPI) applications

To load the EAR Library automatically with non MPI applications it is required
to have it compiled with dynamic symbols and also it must be executed with
srun command. For example, for CUDA applications the --cudart=shared
option must be used. EARL is loaded for OpenMP, MKL and CUDA program-
ming models when symbols are dynamically detected.

2.2.6 Other application types or frameworks

For other programming models or sequential apps not supported by default,
EARL can be forced to be loaded by setting SLURM_EAR_LOADER_APPLICATION
enviroment variable, defined with the application name.

#!/bin/bash

export SLURM_EAR_LOADER_APPLICATION=my_app
srun my_app

2.3 MPI + srun

Running MPI applications with EARL is automatic for SLURM systems when
using srun. All the jobs are monitored by EAR and the Library is loaded by
default depending on the cluster configuration. To run a job with srun and
EARL there is no need to load the EAR module. Even though it is automatic,
there are few flags than can be selected at job submission. When using slurm

5 5

2.3 MPI + srun 2 USER GUIDE

commands for job submission, both Intel and OpenMPI implementations are
supported.

2.3.1 EAR job submission flags

The following EAR options can be specified when running srun and/or sbatch,
and are supported with srun/sbatch/salloc:

Options Description
--ear=[on|off] Enables/disables EAR library loading with this job.
--ear-user-
db=<filename>

Asks the EAR Library to generate a set of CSV files
with EARL metrics. One file per node is generated
with the average node metrics (node signature) and
one file with multiple lines per node is generated with
runtime collected metrics (loops node signatures).

--ear-verbose=[0|1] Specifies the level of verbosity; the default is 0.
Verbose messages are placed by default in stderr. For
jobs with multiple nodes, this option can result in lots
of messages mixed at stderr. You can set
SLURM_EARL_VERBOSE_PATH environment variable and
one file per node will be generated with EAR output.
The environemnt variable must be set with the path (a
directory) where you want the output files to be
generated, it will be automatically created if needed.

For more information consult srun --help output or see configuration options
sections for more detailed description.

2.3.2 CPU frequency selection

The EAR configuration files supports the specification of EAR authorized users,
who can ask for a more privileged submission options. The most relevant ones
are the possibility to ask for a specific optimisation policy and a specific CPU
frequency. Contact with sysadmin or helpdesk team to become an authorized
user.

• The --ear-policy=policy_name flag asks for policy_name policy. Type
srun --help to see policies currently installed in your system.

• The --ear-cpufreq=value (value must be given in kHz) asks for a specific
CPU frequency.

6 6

2.4 MPI + mpirun 2 USER GUIDE

2.3.3 GPU frequency selection

EAR version 3.4 and upwards supports GPU monitoring for NVIDIA devices
from the point of view of the application and node monitoring. GPU frequency
optimization is not yet supported. Authorized users can ask for a specific
GPU frequency by setting the SLURM_EAR_GPU_DEF_FREQ environment variable,
giving the desired GPU frequency expressed in kHz. Only one frequency for all
GPUs is now supported. Contact with sysadmin or helpdesk team to become
an authorized user.

To see the list of available frequencies of the GPU you will work on, you can
type the following command:

nvidia-smi -q -d SUPPORTED_CLOCKS

2.4 MPI + mpirun

To provide an automatic loading of the EAR library, the only requirement from
the MPI library is to be coordinated with the scheduler.

2.4.1 Intel MPI

Recent versions of Intel MPI offers two environment variables that can be used
to guarantee the correct scheduler integrations:

• I_MPI_HYDRA_BOOTSTRAP sets the bootstrap server. It must be set to
slurm.

• I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS sets additional arguments
for the bootstrap server. These arguments are passed to slurm.

You can read here the Intel environment variables guide.

2.4.2 OpenMPI

For OpenMPI and EAR it is highly recommened to use SLURM. When using
mpirun, as OpenMPI is not fully coordinated with the scheduler, the EAR
Library is not automatilly loaded on all the nodes. If mpirun is used, tEARL
will be disabled and only basic energy metrics will be reported.

2.4.3 MPI4PY

To use MPI with Python applications, the EAR Loader cannot automatically
detect symbols to classify the application as Intel or OpenMPI. In order to
specify it, the user has to define the SLURM_LOAD_MPI_VERSION environment

7 7

https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/hydra-environment-variables.html

2.5 Examples 2 USER GUIDE

variable with the values intel or open mpi. It is recommended to add in Python
modules to make it easy for final users.

2.4.4 Using additional MPI profiling libraries/tools

EAR uses the LD_PRELOAD mechanism to be loaded and the PMPI API for a
transparent loading. In order to be compatible with other profiling libraries
EAR is not replacing the MPI symbols, it just calls the next symbol in the list.
So it is compatible with other tools or profiling libraries. In case of conflict, the
EARL can be disabled by setting --ear=off flag at submission time.

2.5 Examples

2.5.0.1 srun examples Having an MPI application asking for one node and
24 tasks, the following is a simple case of job submission. If EAR library is
turned on by default, no extra options are needed to load it. To check if it is on
by default, load the EAR module and execute the ear-info command. EAR
verbose is set to 0 by default (no messages).

srun -J test -N 1 -n 24 --tasks-per-node=24 application

The following executes the application showing EAR messages, including EAR
configuration and node signature in stderr.

srun --ear-verbose=1 -J test -N 1 -n 24 --tasks-per-node=24 application

EARL verbose messages are generated in the standard error. For jobs using
more than 2 or 3 nodes messages can be overwritten. If the user wants to have
EARL messages in a file the SLURM_EARL_VERBOSE_PATH environment variable
must be set with a folder name. One file per node will be generated with EARL
messages.

export SLURM_EARL_VERBOSE_PATH=logs
srun --ear-verbose=1 -J test -N 1 -n 24 --tasks-per-node=24 application

The following asks for EAR library metrics to be stored in csv file after the
application execution. Two files per node will be generated: one with the aver-
age/global signature and another with loop signatures. The format of output
files is <filename>.<nodename>.time.csv for the global signature and <file-
name>.<nodename>.time.loops.csv for loop signatures.

srun -J test -N 1 -n 24 --tasks-per-node=24 --ear-user-db=filename application

For EAR authorized users, the following executes the application with a CPU
frequency of 2.0GHz:

srun --ear-cpufreq=2000000 --ear-policy=monitoring --ear-verbose=1 -J test -N 1 -n 24 --tasks-per-node=24 application

8 8

2.5 Examples 2 USER GUIDE

For --ear-cpufreq to have any effect, you must specify the --ear-policy
option even if you want to run your application with the default policy.

2.5.1 sbatch + EARL + srun

When using sbatch EAR options can be specified in the same way. If more
than one srun is included in the job submission, EAR options can be inherited
from sbatch to the different srun instances or they can be specifically modified
on each individual srun.

The following example will execute twice the application. Both instances will
have the verbosity set to 1. As the job is asking for 10 nodes, we have set
the SLURM_EARL_VERBOSE_PATH environment variable set to the ear_log folder.
Moreover, the second step will create a set of csv files placed in the ear_metrics
folder. The nodename, Job Id and Step Id are part of the filename for a better
identification.

#!/bin/bash
#SBATCH -N 1
#SBATCH -e test.%j.err
#SBATCH -o test.%j.out
#SBTACH --ntasks=24
#SBATCH --tasks-per-node=24
#SBATCH --cpus-per-task=1
#SBATCH --ear-verbose=1

export SLURM_EARL_VERBOSE_PATH=ear_logs

srun application

mkdir ear_metrics
srun --ear-user-db=ear_metrics/app_metrics application

2.5.2 EARL + mpirun

2.5.2.1 Intel MPI When running EAR with mpirun rather than srun, we
have to specify the utilization of srun as bootstrap. Version 2019 and newer of-
fers two environment variables for bootstrap server specification and arguments.

export I_MPI_HYDRA_BOOTSTRAP=slurm
export I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS="--ear-policy=monitoring --ear-verbose=1"
mpiexec.hydra -n 10 application

2.5.2.2 OpenMPI Bootstrap is an Intel® MPI option but not an OpenMPI
option. For OpenMPI srun must be used for an automatic EAR support. In

9 9

2.5 Examples 2 USER GUIDE

case OpenMPI with mpirun is needed, EAR offers the erun comman explained
below.

2.5.3 erun

erun is a program that simulates all the SLURM and EAR SLURM Plugin
pipeline. You can launch erun with the --program option to specify the appli-
cation name and arguments.

mpirun -n 4 /path/to/erun --program="hostname --alias"

In this example, mpirun would run 4 erun processes. Then, erun would launch
the application hostname with its alias parameter. You can use as many pa-
rameters as you want but the semicolons have to cover all the parameters in
case there are more than just the program name. erun would simulate on the
remote node both the local and remote pipelines for all created processes. It
has an internal system to avoid repeating functions that are executed just one
time per job or node, like SLURM does with its plugins.

> erun --help

This is the list of ERUN parameters:
Usage: ./erun [OPTIONS]

Options:
--job-id=<arg> Set the JOB_ID.
--nodes=<arg> Sets the number of nodes.
--program=<arg> Sets the program to run.
--clean Removes the internal files.

SLURM options:
...

The --job-id and --nodes parameters create the environment variables that
SLURM would have created automatically, because it is possible that your ap-
plication make use of them. The --clean option removes the temporal files
created to synchronize all ERUN processes.

Also you have to load the EAR environment module or define its environment
variables in your environment or script:

Variable Parameter
EAR_INSTALL_PATH=<path> prefix=<path>
EAR_TMP=<path> localstatedir=<path>
EAR_ETC=<path> sysconfdir=<path>
EAR_DEFAULT=<on/off> default=<on/off>

10 10

2.6 Job accounting (eacct) 2 USER GUIDE

2.6 Job accounting (eacct)

The eacct command shows accounting information stored in the EAR DB for
jobs (and step) IDs. The command uses EAR’s configuration file to determine
if the user running it is privileged or not, as non-privileged users can only access
their information. It provides the following options. The ear module needs to
be loaded to use the eacct command.

Usage: eacct [Optional parameters]
Optional parameters:

-h displays this message
-v displays current EAR version
-b verbose mode for debugging purposes

-u specifies the user whose applications will be retrieved. Only available to privileged users. [default: all users]
-j specifies the job id and step id to retrieve with the format [jobid.stepid] or the format [jobid1,jobid2,...,jobid_n].

A user can only retrieve its own jobs unless said user is privileged. [default: all jobs]
-a specifies the application names that will be retrieved. [default: all app_ids]
-c specifies the file where the output will be stored in CSV format. [default: no file]
-t specifies the energy_tag of the jobs that will be retrieved. [default: all tags].
-l shows the information for each node for each job instead of the global statistics for said job.
-x shows the last EAR events. Nodes, job ids, and step ids can be specified as if were showing job information.
-m prints power signatures regardless of whether mpi signatures are available or not.
-r shows the EAR loop signatures. Nodes, job ids, and step ids can be specified as if were showing job information.
-n specifies the number of jobs to be shown, starting from the most recent one. [default: 20][to get all jobs use -n all]
-f specifies the file where the user-database can be found. If this option is used, the information will be read from the file and not the database.

2.6.1 eacct usage examples

The basic usage of eacct retrieves the last 20 applications (by default) of the
user executing it. If a user is privileged, it may see all users applications. The
default behaviour shows data from each job-step, aggregating the values from
each node in said job-step. If using SLURM as a job manager, a sb (sbatch)
job-step is created with the data from the entire execution. A specific job may
be specified with -j option: - [user@host EAR]$ eacct -> Shows last 20 jobs
(maximum) executed by the user. - [user@host EAR]$ eacct -j 175966
–> Shows data for jobid = 175966. Metrics are averaged per job.stepid. -
[user@host EAR]$ eacct -j 175966.0 –> Shows data for jobid = 175966
stepid=0. Metrics are averaged per job.stepid. - [user@host EAR]$ eacct
-j 175966,175967,175968 –> Shows data for jobid= 175966, 175967, 175968
Metrics are averaged per job.stepid.

eacct shows a pre-selected set of columns. Some flags sligthly modifies the set
of columns reported: - JOB-STEP: JobID and Step ID. sb is shown for the
sbatch. - USER: Username who executed the job. - APP=APPLICATION:
Job’s name or executable name if job name is not provided. - POLICY: Energy
optimization policy name (MO = Monitoring). - NODES: Number of nodes

11 11

2.7 Jobs executed without the EAR library: Basic Job accounting2 USER GUIDE

which ran the job. - AVG/DEF/IMC(GHz): Average CPU frequency, default
frequency and average uncore frequency. Includes all the nodes for the step. In
KHz. - TIME(s): Step execution time, in seconds. - POWER: Average node
power including all the nodes, in Watts. - GBS: CPU Main memory bandwidth
(GB/second). Hint for CPU/Memory bound classification. - CPI: CPU Cycles
per Instruction. Hint for CPU/Memory bound classification. - ENERGY(J):
Accumulated node energy. Includes all the nodes. In Joules. - GFLOPS/WATT
: CPU GFlops per Watt. Hint for energy efficiency. - IO(MBs) : IO (read and
write) Mega Bytes per second. - MPI% : Percentage of MPI time over the total
execution time. It’s the average including all the processes and nodes. - GPU
metrics - G-POW (T/U) : Average GPU power. Accumulated per node and
average of all the nodes. - T = Total (GPU power consumed even if the process
is not using them). - U = GPUs used by the job. - G-FREQ : Average GPU
frequency. Per node and average of all the nodes. - G-UTIL(G/MEM) : GPU
utilization and GPU memory utilization.

For node-specific information, the -l option provides detailed accounting of
each individual node: - [user@host EAR]$ eacct -j 175966 -l –> Shows
per-node data for jobid=175966. - [user@host EAR]$ eacct -j 175966.0 -l
–> Shows per-node data for jobid=175966, stepid=0.

One additional column is shown: the VPI. The VPI is the percentage of AVX512
instructions over the total number of instructions.

For runtime data (EAR loops) one may retrieve them with -r. Both Job Id and
Step Id filtering works: - [user@host EAR]$ eacct -j 175966.1 -r –> shows
metrics reported at runtime by the EAR library for jobid=175966 , stepid=1.

To easily transfer eacct’s output, -c option saves it in .csv format. Both aggre-
gated and detailed accountings are available, as well as filtering: - [user@host
EAR]$ eacct -j 175966 -c test.csv –> adds to file test.csv all the met-
rics in EAR DB for jobid=175966. Metrics are averaged per application. -
[user@host EAR]$ eacct -j 175966.1 -c -l test.csv –> adds to file
test.csv all the metrics in EAR DB for jobid=175966, stepid= 1. Metrics are
per-node. - [user@host EAR]$ eacct -j 175966.1 -c -r test.csv –> adds
to file test.csv all the metrics in EAR DB for jobid=175966, stepid= 1. Metrics
are per loop and node.

When using the -c option, all the metrics available in the EAR DB are reported.

2.7 Jobs executed without the EAR library: Basic Job
accounting

EAR library is automatically loaded with some programming models (MPI,
MKL, OpenMP and CUDA). For applications not executed with the EARL
loaded -for example, when srun is not used or programming models or appli-
cations not loaded by default by the EAR library- EAR provides a default

12 12

3 ADMIN GUIDE

monitoring. In this case a subset of metrics will be reported. In particular: -
accumulated DC energy(J) - accumulated DRAM energy(J) - accumulated CPU
PCK energy(J) - EDP - maximum DC power detected(W) - minimum DC power
detected(W) - execution time (in sec) - CPU average frequency (kHz) - CPU
default frequency(KHz).

DC node energy includes the CPU and GPU energy if there are. These metrics
are reported per node and jobid and stepid, so they can be seen per job and job
and step when using eacct.

[[TOC]]

3 Admin guide

3.1 EAR Components

EAR is composed of five main components: - Node Manager (EARD). The
Node Manager must have root access to the node where it will be running.
- Database Manager (EARDBD). The database manager requires access
to the DB server (we support MariaDB and Postgress). Documentation for
Postgress is still under development. - Global Manager (EARGM). The
global manager needs access to all node managers in the cluster as well as
access to database. - Library (EARL) - SLURM plugin

The following image shows the main interactions between components:

For a more detailed information about EAR components, visit the Architecture
page.

3.2 Quick Installation Guide

This section provides a, summed up, step by step installation and execution
guide for EAR. For a more in depth explanation of the necessary steps see the
Installation from source page or the Installing from RPM section, following the
Configuration guide, or contact us at ear-support@bsc.es

3.2.1 EAR Requirements

Requirements to compile EAR are: - C compiler. - MPI compiler. - CUDA
installation path if NVIDIA is used. - Likwid path if Likwid is used. - Freeipmi
path if freeipmi is used. - GSL is needed for coefficient computations.

13 13

Architecture
Configuration

3.2 Quick Installation Guide 3 ADMIN GUIDE

To install EAR from rpm (only binaries) all these dependencies have been
removed except mysqlclient. However, they are needed when running EAR.

SLURM must also be present if the SLURM plugin wants to be used. Since
current EAR version only supports automatic execution of applications with
EAR library using the SLURM plugin, it must be running when EAR library
wants to be used (not needed for node monitoring).

Lastly, but not less important: - The drivers for CPU frequency management
(acpi-cpufreq) and Open IPMI must be present and loaded in compute nodes. -
msr kernel module must be loaded in compute nodes. - mariaDB or postgress
server must be up and running. - Hardware counters must be accessible for
normal users. Set /proc/sys/kernel/perf_event_paranoid to 2 (or less). Type
sudo sh -c "echo 2 > /proc/sys/kernel/perf_event_paranoid" in compute
nodes.

Run ./configure --help to see all the flags and options.

3.2.2 Compiling and installing EAR

Once downloaded the code from repository, execute: - autoreconf -i.

./configure --prefix=ear-install-path \
EAR_TMP=ear-tmp-path \EAR_ETC=ear-etc-path \
CC=c-compiler-path \
MPICC=mpi-compiler-path \
CC_FLAGS=c-flags-compiler \
MPICC_FLAGS=mpi-flags \
--with-cuda=path-to-cuda \
MAKE_NAME=make_extension`

Additionally to the Makefile, MAKE_NAME forces to copy the generated Makefile
with the name Makefile._make_extension_. It simplifies the fact of having
multiple configurations (1 for each library version needed). More relevant op-
tions are: - The option --disable-mpi must be set to generate a configuration
for non-MPI version of the library. - Use MPI_VERSION=ompi for OpenMPI
compatible version.

Before running make, review the Makefile and the configuration log to validate
all the requirements of your installation have been automatically detected. In
particular, if you need to use some specific library such likwid, freeipmi or CUDA.
If CUDA path is specified, EAR will be compiled with GPU support. Check
also that MySQL ot PostgreSQL paths have been detected. You can use options
USER and GROUP if you want to install EAR with a special USER/GROUP.

The following shows how to configure EAR to be compiled with Intel MPI:

autoreconf -i
./configure --prefix=/opt/ear CC=icc MPICC=mpiic MAKE_NAME=impi

14 14

3.2 Quick Installation Guide 3 ADMIN GUIDE

make -f Makefile.impi
make -f Makefile.impi install
make -f Makefile.impi doc.install
make -f Makefile.impi etc.install

At this point the EAR binaries will be installed including one version of the
EAR library for MPI (default), EAR documentation, EAR service files for EAR
daemons and templates for ear.conf files and SLURM plugin. The configure
tool tries to automatically detect paths to mysql and/or postgress, scheduler
sources, etc. It is mandatory to detect the scheduler path, by default SLURM
is assumed. After the configure, check in the Makefile all the options have been
detected. After the make install, you should have the following folders in the
ear-install-path: bin, sbin, etc, lib, include, man. The bin directory includes
commands and tools, the sbin includes EAR services, the lib includes all the
libraries and plugins, and etc includes templates and examples for EAR service
files, ear.conf file, the EAR module, etc.

3.2.3 Deployment and validation

3.2.3.1 Monitoring: Compute node and DB Prepare the configura-
tion

Either installing from sources or rpm, EAR installs a template for ear.conf file
in $EAR_ETC/ear/ear.conf.template and $EAR_ETC/ear/ear.conf.full.template.
The full version includes all fields. Copy only one as $EAR_ETC/ear/ear.conf
and update with the desired configuration. Go to the configuration section to
see how to do it. The ear.conf is used by all the services. It is recommended
to have in a shared folder to simplify the changes in the configuration.

EAR module

Install and load EAR module to enable commands. It can be found at
$EAR_ETC/module. You can add ear module whan it is not in standard path by
doing module use $EAR_ETC/module and then module load ear.

EAR Database Create EAR database with edb_create, installed at
$EAR_INSTALL_PATH/sbin. The edb_create -p command will ask you for the
DB root password. If you get any problem here, check first whether the node
where you are running the command can connect to the DB server. In case
problems persists, execute edb_create -o to report the specific SQL queries
generated. In case of trouble, contact with ear-support@bsc.es or open in issue.

Energy models

EAR uses a power and performance model based on systems signatures. These
system signatures are stored in coefficient files.

Before starting EARD, and just for testing, it is needed to create a dummy coeffi-
cient file and copy in the coefficients path, by default placed at$EAR_ETC/coeffs.

15 15

www.example.org

3.2 Quick Installation Guide 3 ADMIN GUIDE

Use the coeffs_null application from tools section.

EAR version 4.1 does not require null coefficients.

EAR services

Create soft links or copy EAR service files to start/stop services using system
commands such as systemctl in the services folder. EAR service files are gener-
ated at $EAR_ETC/systemd and they can usually be placed in $(ETC)/systemd.

• EARD must be started on compute nodes.
• EARDBD must be started on service nodes (can be any node with DB

access).

Enable and start EARDs and EARDBDs via services (e.g., sudo systemctl
start eard, sudo systemctl start eardbd). EARDBD and EARD out-
puts can be found at $EAR_TMP/eardbd.server.log and $EAR_TMP/eard.log
respectively when DBDaemonUseLog and NodeUseLog options are set to 1 in
the ear.conf file, respectively. Otherwise, their outputs are generated at stderr
and can be seen using the journalctl command (i.e., journalctl -u eard).

By default, a certain level of verbosity is set. It is not recommended to
modify it but you can change it by modifying the value of constants in file
src/common/output/output_conf.h.

Quick validation

Check that EARDs are up and running correctly with econtrol --status
(note that daemons will take around a minute to correctly report energy
and not show up as an error in econtrol). EARDs create a per-node text
file with values reported to the EARDBD (local to compute nodes). In
case there are problems when running econtrol, you can also find this file at
$EAR_TMP/nodename.pm_periodic_data.txt.

Check that EARDs are reporting metrics to database with ereport. ereport
-n all should report the total energy sent by each daemon since the setup.

3.2.3.2 Monitoring: EAR plugin

• Set up EAR’s SLURM plugin (see the configuration section for
more information). > It is recommented to create a soft link to the
$EAR_ETC/slurm/ear.plugstack.conf file in the /etc/slurm/plugstack.conf.d
directory to simplify the EAR plugin management.

For a first test it is recommened to set default=off in the
ear.plugstack.conf (to disable the automatic loading of the EAR
library).

EAR plugin validation

16 16

www.example.org

3.2 Quick Installation Guide 3 ADMIN GUIDE

At this point you must be able to see EAR options when doing, for example,
srun --help. You must see something like below as part of the output. The
EAR plugin must be enabled at login and compute nodes.

[user@hostname ~]$ srun --help
Usage: srun [OPTIONS(0)... [executable(0) [args(0)...]]] [: [OPTIONS(N)...]] executable(N) [args(N)...]

Parallel run options:
...

Constraint options:
...

Consumable resources related options:
...

Affinity/Multi-core options: (when the task/affinity plugin is enabled)
...

Options provided by plugins:
--ear=on|off Enables/disables Energy Aware Runtime Library
--ear-policy=type Selects an energy policy for EAR

{type=default,gpu_monitoring,monitoring,min_energ-
y,min_time,gpu_min_energy,gpu_min_time}

--ear-cpufreq=frequency Specifies the start frequency to be used by EAR
policy (in KHz)

--ear-policy-th=value Specifies the threshold to be used by EAR policy
(max 2 decimals) {value=[0..1]}

--ear-user-db=file Specifies the file to save the user applications
metrics summary 'file.nodename.csv' file will be

created per node. If not defined, these files
won't be generated.

--ear-verbose=value Specifies the level of the
verbosity{value=[0..1]}; default is 0

--ear-learning=value Enables the learning phase for a given P_STATE
{value=[1..n]}

--ear-tag=tag Sets an energy tag (max 32 chars)

...

Help options:
-h, --help show this help message

--usage display brief usage message

Other options:
-V, --version output version information and exit

17 17

3.2 Quick Installation Guide 3 ADMIN GUIDE

• Submit one application via SLURM and check that it is correctly reported
to the database with eacct command.

Note that only privileged users can check other users’ applications.

• Submit one MPI application (corresponding with the version you have
compiled) with --ear=on and check that now the output of eacct includes
the Library metrics.

• Set default=on to set the EAR Library loading by default at
ear.plugstack.conf. If default is turned off, EARL can be explic-
itly loaded by setting the flag --ear=off at job submission.

At this point, you can use EAR for monitoring and accounting purposes but it
cannot use the power policies offered by EARL. To enable them, first perform
a learning phase and compute node coefficients. See the EAR learning phase
wiki page. For the coefficients to be active, restart daemons.

Important Reloading daemons will NOT make them load coeffi-
cients, restarting the service is the only way.

3.2.4 EAR Library versions: MPI vs. Non-MPI

As commented in the overview, the EAR Library is loaded next to the user
MPI application by the EAR Loader. The Library uses MPI symbols, so it
is compiled by using the includes provided by your MPI distribution. The
selection of the library version is automatic at runtime, but it is not required
during the compilation and installation steps. Each compiled library version has
its own file name that has to be defined by the MPI_VERSION variable during
the ./configure or by editing the root Makefile.

The name list per distribution is exposed in the following table:

Distribution Name MPI_VERSION value
Intel MPI libear.so (default) not required
MVAPICH libear.so (default) not required
OpenMPI libear.ompi.so ompi

If different MPI distributions share the same library name, it means their sym-
bols are compatible between them, so compiling and installing the library one
time will be enough. However, if you provide different MPI distributions to
users, you will have to compile and install the library multiple times.

EAR makefiles include a specific target for each EAR component, supporting
full or partial updates:

18 18

www.example.org

3.3 Installing from RPM 3 ADMIN GUIDE

Command Description
make -f Makefile.make_extension
install

Reinstall all the files except etc and
doc.

make -f Makefile.make_extension
earl.install

Reinstall only the EARL.

make -f Makefile.make_extension
eard.install

Reinstall only the EARD.

make -f Makefile.make_extension
earplug.install

Reinstall only the EAR SLURM
plugin.

make -f Makefile.make_extension
eardbd.install

Reinstall only the EARDBD.

make -f Makefile.make_extension
eargmd.install

Reinstall only the EARGMD.

make -f Makefile.make_extension
reports.install

Reinstall only report plugins.

Before compiling new libraries you have to install by typing make install.
Then you can run the ./configure again, changing the MPICC, MPICC_FLAGS
and MPI_VERSION variables, or just opening the root Makefile and edit the same
variables and MPI_BASE, which just sets the MPI installation root path. Now
type make full to perform a clean compilation and make earl.install, to
install only the new version of the library.

If your MPI version is not fully compatible, please contact ear-support@bsc.es.

See the User guide to check the use cases supported and how to submit jobs
with EAR.

3.3 Installing from RPM

EAR includes the specification files to create an rpm from an already existing
installation. The spec file is placed at etc/rpms. To create the RPM it is
needed a valid installation from source. The RPM can be part of the system
image. Visit the Requirements page for a quick overview of the requirements.

Execute the rpmbuild.sh script to create the EAR rpm file. Once created, it
can be included in the compute nodes images. It is recommened only when
no more changes are expected on the installation. Once you have the rpm file,
execute the following steps: - Before the installation, make sure the installation
path is accessible by all the computing nodes. Do the same in the folder
where you want to set the temporary files (it will be called $(EAR_TMP) in this
guide for simplicity). - Default paths are /usr and /etc. - Run rpm -ivh
--relocate /usr=/new/install/path --relocate /etc=/new/etc/path
ear.version.rpm.

19 19

3.4 Next steps 3 ADMIN GUIDE

You can also use the --nodeps if your dependency test fails.

• During the installation the configuration files *.in are compiled to the
ready to use version, replacing tags for correct paths. You will have more
information of those files in the following pages. Check the next section
for more information.

• Type rpm -e ear.version to uninstall.

3.3.1 Installation content

The *.in configuration files are compiled into etc/ear/ear.conf.template
and etc/ear/ear.full.conf.template, etc/module/ear, etc/slurm/ear.plugstack.conf
and various etc/systemd/ear*.service. You can find more information in
the configuration page. Below table describes the complet heriarchy of the
EAR installation:

Directory Content / description
/usr/lib Libraries and the scheduler plugin.
/usr/lib/plugins EAR plugins.
/usr/bin EAR commands.
/usr/bin/tools EAR tools for coefficients computation.
/usr/sbin Privileged components: EARD, EARDBD, EARGMD.
/etc/ear Configuration files templates.
/etc/ear/coeffs Folder to store coefficient files.
/etc/module EAR module.
/etc/slurm EAR SLURM plugin configuration file.
/etc/systemd EAR service files.

3.4 Next steps

For a better overview of the installation process, return to the installation guide.
To continue the installation, visit the configuration page to set up properly the
EAR configuration file and the EAR SLURM plugin stack file.

[[TOC]]

3.5 Architecture

3.5.1 EARD: Node Manager

EAR’s daemon is a per-node process that provides privileged metrics of each
node as well as a periodic power monitoring service. Said periodic power metrics

20 20

3.5 Architecture 3 ADMIN GUIDE

are sent to EAR’s database either directly or via the database daemon (see the
configuration page).

For more information, see EARD.

3.5.2 EARDBD: Database Manager

The database daemon acts as an intermediate layer between any EAR com-
ponent that inserts data and the EAR’s database, in order to prevent the
database server from collapsing due to getting overrun with connections and
insert queries.

For more information, see EARDBD.

3.5.3 EARGMD: Global Manager

EAR’s Global Manager Daemon (EARGMD) is a cluster wide component that
controls the percentage of the maximum energy consumed.

For more information, see EARGM.

3.5.4 EARL: The EAR Library

The EAR Library is the core of the EAR package. The EARL offers a lightweight
and simple solution to select the optimal frequency for MPI applications at
runtime, with multiple power policies each with a different approach to find
said frequency. EARL uses the daemon to read performance metrics and to
send application data to EAR’s database.

For more information about the library itself, see EARL. You can also read
about EAR policies and the EAR API to use EAR as a third party library in
you application.

3.5.5 EARLo: EAR Loader

The EAR Loader is the responsible for loading the EAR Library. It is a small
and lightweight library loaded by the EAR SLURM Plugin that identifies the
user application and loads its corresponding EAR Library distribution.

For more information, see EARLo.

3.5.6 EAR SLURM plugin

EAR SLURM plugin allows to dynamically load and configure the EAR library
for the SLURM jobs, if the enabling argument is set or is enabled by default.

21 21

EARD
EARDBD
EARGM
EARL

3.6 Installation from source 3 ADMIN GUIDE

Additionally, it reports any jobs that start or end to the nodes’ EARDs for
accounting and monitoring purposes.

For more information, see SLURM Plugin.

3.6 Installation from source

3.6.1 Requirements

EAR requires some third party libraries and headers to compile and run, in
addition to the basic requirements such as the compiler and Autoconf. This is
a list of these libraries, minimum tested versions and its references:

Library Minimum version References
MPI - -
MySQL* 15.1 MySQL or MariaDB
PostgreSQL* 9.2 PostgreSQL
Autoconf 2.69 Website
GSL 1.4 Website

* Just one of them required.

These libraries are not required, but can be used to get additional functionality
or metrics:

Library Minimum version References
SLURM 17.02.6 Website
PBS** 2021 PBSPro or OpenPBS
CUDA/NVML 7.5 CUDA
CUPTI** 7.5 CUDA
Likwid 5.2.1 Likwid
FreeIPMI 1.6.8 FreeIPMI
OneAPI/L0** 1.7.9 OneAPI
LibRedFish** 1.3.6 LibRedFish

** These will be available in next release.

Also, some drivers has to be present and loaded in the system:

Driver File Kernel version References
CPUFreq kernel/drivers/cpufreq/acpi-cpufreq.ko 3.10 Information
Open IPMI kernel/drivers/char/ipmi/*.ko 3.10 Information

22 22

https://mysql.com
https://mariadb.org/
https://www.postgresql.org/
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/gsl/
https://slurm.schedmd.com/
https://www.altair.com.es/pbs-professional/
https://www.openpbs.org/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://github.com/RRZE-HPC/likwid
https://www.gnu.org/software/freeipmi/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.0k5fbb
https://github.com/DMTF/libredfish
https://wiki.archlinux.org/index.php/CPU_frequency_scaling
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/cwlin/configuring-the-open-ipmi-driver.html

3.6 Installation from source 3 ADMIN GUIDE

Lastly, the compilers: EAR uses C compilers. It has been tested with both
Intel and GNU.

Compiler Comment Minimum version References
GNU Compiler Collection (GCC) For the library and daemon 4.8.5 Website
Intel C Compiler (ICC) For the library and daemon 17.0.1 Website

3.6.2 Compilation and installation guide summary

1. Before the installation, make sure the installation path is accessible by
all the computing nodes. Do the same in the folder where you want to
set the configuration files (it will be called $(EAR_ETC) in this guide for
simplicity).

2. Generate Autoconf’s configure program by typing autoreconf -i.
3. Read sections below to understand how to properly set the configure

parameters.
4. Compile EAR components by typing ./configure ..., make and make

install in the root directory.
5. Type make etc.install to install the content of $(EAR_ETC). It is the

configuration content, but that configuration will be expanded in the next
section. You have a link at the bottom of this page.

3.6.3 Configure options

configure is based on shell variables which initial value could be given by
setting variables in the command line, or in the environment. Take a look to
the table with the most popular variables:

Variable Description
MPICC MPI compiler.
CC C compiler command.
MPICC_FLAGSMPI compiler flags.
CFLAGSC compiler flags.
CC_FLAGSAlso C compiler flags.
LDFLAGSLinker flags. E.g. ‘-L<lib dir>’ if you have libraries in a nonstandard

directory <lib dir>.
LIBS Libraries to pass to the linker. E.g. ‘-l’.
EAR_TMPDefines the node local storage as ‘var’, ‘tmp’ or other tempfs file

system (default: /var/ear) (you can alo use –localstatedir=DIR).
EAR_ETCDefines the read-only single-machine data as ‘etc’ (default:

EPREFIX/etc) (you can also use –sharedstatedir=DIR).
MAN Defines the manual directory (default: PREFIX/man) (you can use

also –mandir=DIR).

23 23

https://gcc.gnu.org/
https://software.intel.com/en-us/c-compilers

3.6 Installation from source 3 ADMIN GUIDE

Variable Description
DOC Defines the documentation directory (default: PREFIX/doc) (you

can use also –docdir=DIR).
MPI_VERSIONAdds a suffix to the compiled EAR library name. Read further down

this page for more information.
USER Owner user of the installed files.
GROUP Owned group of the installed files
MAKE_NAMEIt adds an additional Makefile with a suffix.

• This is an example of CC, CFLAGS and DEBUG variables overwriting:
./configure CC=icc CFLAGS=-g EAR_ETC=/hpc/opt/etc

You can choose the root folder by typing ./configure --PREFIX=<path>. But
there are other options in the following table:

Definition Default directory Content / description
<PREFIX> /usr/local Installation path
<EAR_ETC> <PREFIX>/etc Configuration files.
<EAR_TMP> /var/ear Pipes and temporal files.

You have more installation options information by typing ./configure --help.
If you want to change the value of any of this options after the configuration
process, you can edit the root Makefile. All the options are at the top of the
text and its names are self-explanatory.

3.6.4 Adding required libraries installed in custom locations

The configure script is capable to find libraries located in custom location if a
module is loaded in the environment or its path is included in LD_LIBRARY_PATH.
If not, you can help configure to find SLURM, or other required libraries in
case you installed in a custom location. It is necessary to add its root path for
the compiler to see include headers and libraries for the linker. You can do this
by adding to it the following arguments:

Argument Description
–with-cuda=<path> Specifies the path to CUDA installation.
–with-freeipmi=<path> Specify path to FREEIPMI installation.
–with-gsl=<path> Specifies the path to GSL installation.
–with-likwid=<path> Specifies the path to LIKWID installation.
–with-mysql=<path> Specify path to MySQL installation.
–with-pgsql=<path> Specify path to PostgreSQL installation.
–with-pbs Enable PBS components.

24 24

3.6 Installation from source 3 ADMIN GUIDE

Argument Description
–with-slurm=<path> Specifies the path to SLURM installation.

• This is an example of CC overwriting the CUDA path specification:
./configure --with-cuda=/path/to/CUDA

If unusual procedures must be done to compile the package, please try to figure
out how configure could check whether to do them and contact the team to
be considered for the next release. In the meantime, you can overwrite shell
variables or export its paths to the environment (e.g. LD_LIBRARY).

3.6.5 Additional configure flags

Also, there are additional flags to help administrator increase the compatibility
of EAR in nodes.

Argument Description
–disable-
rpath

Disables the RPATH included in binaries to specify some
dependencies location.

–disable-
avx512

Replaces the AVX-512 function calls by AVX-2.

–disable-gpus The GPU monitoring data is not allocated nor inserted in the
database.

–disable-mpi Compiles the non-mpi version of the library.

3.6.6 Pre-installation fast tweaks

Some EAR characteristics can be modified by changing the value of the constants
defined in src/common/config/config_def.h. You can open it with an editor
and modify those pre-procesor variables to alter the EAR behaviour.

Also, you can quickly switch the user/group of your installation files by modi-
fying the CHOWN_USR/CHOWN_GRP variables in the root Makefile.

3.6.7 Library distributions/versions

As commented in the overview, the EAR library is loaded next to the user MPI
application by the EAR Loader. The library uses MPI symbols, so it is compiled
by using the includes provided by your MPI distribution. The selection of the
library version is automatic in runtime, but in the compiling and installation
process is not required. Each compiled library has its own file name that has to

25 25

3.6 Installation from source 3 ADMIN GUIDE

be defined by the MPI_VERSION variable during ./configure or by editing the
root Makefile. The name list per distribution is exposed in the following table:

Distribution Name MPI_VERSION variable
Intel MPI libear.so (default) it is not required
MVAPICH libear.so (default) it is not required
OpenMPI libear.ompi.so ompi

If different MPI distributions shares the same library name, it means that its
symbols are compatible between them, so compiling and installing the library
one time will be enough. However, if you provide different MPI distributions to
the users, you will have to compile and install the library multiple times.

Before compiling new libraries you have to install by typing make install.
Then you can run the ./configure again, changing the MPICC, MPICC_FLAGS
and MPI_VERSION variables, or just opening the root Makefile and edit the
same variables and MPI_BASE, which just sets the MPI installation root path.
Now type make full to perform a clean compilation and make earl.install,
to install only the new version of the library.

If your MPI version is not fully compatible, please contact ear-support@bsc.es.
We will add compatibility to EAR and give you a solution in the meantime.

3.6.8 Other useful flags

You can install individual components by doing: make eard.install to
install EAR Daemon, make earl.install to install EAR Library, make
eardbd.install EAR Database Manager, make eargmd.install EAR Global
Manager and make commands.install the EAR command binaries.

3.6.9 Installation content

This is the list of the inner installation folders and their content:

Root Directory Content / description
<PREFIX> /lib Libraries.
<PREFIX> /lib/plugins Plugins.
<PREFIX> /bin EAR commands.
<PREFIX> /bin/tools EAR tools for coefficients.
<PREFIX> /sbin Privileged components.
<PREFIX> /man Documentation.
<EAR_ETC> /ear Configuration file.
<EAR_ETC> /ear/coeffs Coefficient files store.

26 26

3.7 Configuration 3 ADMIN GUIDE

Root Directory Content / description
<EAR_ETC> /module EAR module.
<EAR_ETC> /slurm ear.plugstack.conf.
<EAR_ETC> /systemd EAR service files.

3.6.10 Fine grain tuning of EAR options

Some options such as the maximum number of CPUs or GPUs supported are
defined in src/common/config files. It is not recommended to modify these files
but some options and default values can be set by modifying them.

3.6.11 Next step

For a better overview of the installation process, return to our Quick installa-
tion guide. To continue the installation, visit the configuration page to set up
properly the EAR configuration file and the SLURMs plugin stack file.

3.7 Configuration

[[TOC]]

3.7.1 Configuration requirements

The following requirements must be met for EAR to work properly:

3.7.1.1 EAR paths EAR folders EAR uses two paths for EAR configu-
ration: - EAR_TMP: tmp_ear_path must be a private folder per compute
node. It must have read/write permissions for normal users. Communication
files are created here. It must be created by the admin. For instance: mkdir
/var/ear; chmod ugo +rwx /var/ear - EAR_ETC: etc_ear_path must be
readable for normal users in all compute nodes. It can be a shared folder in
“GPFS” (simple to manage) or replicated data because it has very few data and
it is modified at a very low frequency (ear.conf and coefficients). Coefficients
can be installed in a different path specified at configure time with COEFFS
flag. Both ear.conf and coefficients must be readable in all the nodes (compute
and “service” nodes).

ear.conf ear.conf is an ascii file setting default values and cluster descriptions.
An ear.conf is automatically generated based on a ear.conf.in template. How-
ever, the administrator must include installation details such as hostname details
for EAR services, ports, default values, and the list of nodes. For more details,
check EAR configuration file below.

27 27

3.7 Configuration 3 ADMIN GUIDE

3.7.1.2 DB creation and DB server MySQL or PostgreSQL database:
EAR saves data in a MySQL/PostgreSQL DB server. EAR DB can be cre-
ated using edb_create command provided (MySQL/PostgreSQL server must
be running and root access to the DB is needed).

3.7.1.3 EAR SLURM plug-in EAR SLURM plug-in can be enabled by
adding an additional line at the /etc/slurm/plugstack.conf file. You can
copy from the ear_etc_path/slurm/ear.plugstack.conf file).

Another way to enable it is to create the directory /etc/slurm/plugstack.conf.d
and copy there the ear_etc_path/slurm/ear.plugstack.conf file. On
that case, the content of /etc/slurm/plugstack.conf must be include
/etc/slurm/plugstack.conf.d/*.

3.7.2 EAR configuration file

The ear.conf is a text file describing the EAR package behaviour in the cluster.
It must be readable by all compute nodes and by nodes where commands are
executed. Two ear.conf templates are generated with default values and will
be installed as reference when executing make etc.install.

Usually the first word in the configuration file expresses the component related
with the option. Lines starting with # are comments. A test for ear.conf file
can be found in the path src/test/functionals/ear_conf. It is recommended
to test it since the ear.conf parser is very sensible to errors in the ear.conf
syntax, spaces, newlines, etc.

3.7.2.1 Database configuration

The IP of the node where the MariaDB (MySQL) or PostgreSQL server process is running. Current version uses same names for both DB servers.
DBIp=172.30.2.101
Port in which the server accepts the connections.
DBPort=3306

MariaDB user that services will use. Needs INSERT/SELECT privileges. Used by the EARDBD.
DBUser=eardbd_user
Password for the previous user. If left blank or commented it will assume the user has no password.
DBPassw=eardbd_pass
Database user that the commands (eacct, ereport) will use. Only uses SELECT privileges.
DBCommandsUser=ear_commands
Password for the previous user. If left blank or commented it will assume the user has no password.
DBCommandsPassw=commandspass

Name of EAR's database in the server.
DBDatabase=EAR

28 28

3.7 Configuration 3 ADMIN GUIDE

Maximum number of connections of the commands user to prevent server
saturation/malicious actuation. Applies to DBCommandsUser.
DBMaxConnections=20
The following specify the granularity of data reported to database.
Extended node information reported to database (added: temperature, avg_freq, DRAM and PCK energy in power monitoring).
DBReportNodeDetail=1
Extended signature hardware counters reported to database.
DBReportSigDetail=1
Set to 1 if you want Loop signatures to be reported to database.
DBReportLoops=1

3.7.2.2 EARD configuration

The port where the EARD will be listening.
NodeDaemonPort=50001

Frequency used by power monitoring service, in seconds.
NodeDaemonPowermonFreq=60
Maximum supported frequency (1 means nominal, no turbo).
NodeDaemonMaxPstate=1
Enable (1) or disable (0) the turbo frequency.
NodeDaemonTurbo=0

Enables the use of the database.
NodeUseDB=1
Inserts data to MySQL by sending that data to the EARDBD (1) or directly (0).
NodeUseEARDBD=1
'1' means EAR is controlling frequencies at all times (targeted to production systems) and 0 means EAR will not change the frequencies when users are not using EAR library (targeted to benchmarking systems).
NodeDaemonForceFrequencies=1

The verbosity level [0..4]
NodeDaemonVerbose=1
When set to 1, the output is saved at '$EAR_TMP'/eard.log (common configuration) as a log file. Otherwsie, stderr is used.
NodeUseLog=1

Report plug-ins to be used by the EARD. Default= eardbd.so.
Add extra plug-ins by separating with colons (e.g., eardbd.so:plugin1.so).
EARDReportPlugins=eardbd.so

3.7.2.3 EARDBD configuration

Port where the EARDBD server is listening.
DBDaemonPortTCP=50002
Port where the EARDBD mirror is listening.

29 29

3.7 Configuration 3 ADMIN GUIDE

DBDaemonPortSecTCP=50003
Port used to synchronize the server and mirror.
DBDaemonSyncPort=50004

In seconds, interval of time of accumulating data to generate an energy aggregation.
DBDaemonAggregationTime=60
In seconds, time between inserts of the buffered data.
DBDaemonInsertionTime=30
Memory allocated per process. These allocations are used for buffering the data
sent to the database by EARD or other components. If there is a server and a
mirror in a node a double of that value will be allocated. It is expressed in MegaBytes.
DBDaemonMemorySize=120

When set to 1, EARDBD uses a '$EAR_TMP'/eardbd.log file as a log file.
DBDaemonUseLog=1

Report plug-ins to be used by the EARDBD. Default= mysql.so.
Add extra plug-ins by separating with colons (e.g., mysql.so:plugin1.so).
EARDBDReportPlugins=mysql.so

3.7.2.4 EARL configuration

Path where coefficients are installed, usually $EAR_ETC/ear/coeffs.
CoefficientsDir=/path/to/coeffs

NOTE: It is not recommended to change the following
attributes if you are not an expert user.
Number of levels used by DynAIS algorithm.
DynAISLevels=10
Windows size used by DynAIS, the higher the size the higher the overhead.
DynAISWindowSize=200
Maximum time (in seconds) that EAR will wait until a signature is computed. After this value, if no signature is computed, EAR will go to periodic mode.
DynaisTimeout=15
Time in seconds to compute every application signature when the EAR goes to periodic mode.
LibraryPeriod=10
Number of MPI calls whether EAR must go to periodic mode or not.
CheckEARModeEvery=1000
EARL default report plug-ins
EARLReportPlug-ins=eard.so

3.7.2.5 EARGM configuration You can skip this section if EARGM is
not used in your installation.

Use aggregated periodic metrics or periodic power metrics.
Aggregated metrics are only available when EARDBD is running.

30 30

3.7 Configuration 3 ADMIN GUIDE

EARGMUseAggregated=1
Period T1 and T2 are specified in seconds. T1 must be less than T2, e.g., 10min and 1 month.
EARGMPeriodT1=90
EARGMPeriodT2=259200
'-' are Joules, 'K' KiloJoules and 'M' MegaJoules.
EARGMUnits=K

Energy limit applies to EARGMPeriodT2.
EARGMEnergyLimit=550000
EARGMPort=50000

Two modes are supported '0=manual' and '1=automatic'.
manual means no actions are token, only monitoring.
EARGMMode=0
Email address to report the warning level (and the action taken in automatic mode).
EARGMMail=nomail
Percentage of accumulated energy to start the warning DEFCON level L4, L3 and L2.
EARGMWarningsPerc=85,90,95
T1 "grace" periods between DEFCON before re-evaluate.
EARGMGracePeriods=3
Verbosity
EARGMVerbose=1
When set to 1, the output is saved at 'TmpDir'/eargmd.log (common configuration) as a log file.
EARGMUseLog=1
Format for action is: "command_name energy_T1 energy_T2 energy_limit T2 T1 units"
This action is automatically executed at each warning level (only once per grace periods).
EARGMEnergyAction=no_action

Period at which the powercap thread is activated.
EARGMPowerPeriod=120
1 means automatic, 0 is only monitoring.
EARGMPowerCapMode=1
Admins can specify to automatically execute a command in
EARGMPowerCapSuspendAction when total_power >= EARGMPowerLimit*EARGMPowerCapResumeLimit/100
EARGMPowerCapSuspendLimit=90
Format for action is: command_name current_power current_limit total_idle_nodes total_idle_power
EARGMPowerCapSuspendAction=no_action
Admins can specify to automatically execute a command in EARGMPowerCapResumeAction
to undo EARGMPowerCapSuspendAction when total_power >= EARGMPowerLimit*EARGMPowerCapResumeLimit/100.
Note that this will only be executed if a suspend action was executed previously.
EARGMPowerCapResumeLimit=40
Format for action is: command_name current_power current_limit total_idle_nodes total_idle_power
EARGMPowerCapResumeAction=no_action

EARGMs must be specified with a unique id, their node and the port that receives
remote connections. An EARGM can also act as meta-eargm if the meta field is filled,

31 31

3.7 Configuration 3 ADMIN GUIDE

and it will control the EARGMs whose ids are in said field. If two EARGMs are in the
same node, setting the EARGMID environment variable overrides the node field and
chooses the characteristics of the EARGM with the correspoding id. If energy is
set to 0, cluster_energy_cap will be disabled for that EARGM. Currently, only 1
cluster_energy_cap is supported.
EARGMId=1 energy=1800 power=600 node=node1 port=50100 meta=1,2,3
EARGMId=2 energy=0 power=500 node=node1 port=50101
EARGMId=3 energy=0 power=500 node=node2 port=50100

3.7.2.6 Common configuration

Default verbose level
Verbose=0
Path used for communication files, shared memory, etc. It must be PRIVATE per
compute node and with read/write permissions. $EAR_TMP
TmpDir=/tmp/ear
Path where coefficients and configuration are stored. It must be readable in all compute nodes. $EAR_ETC
EtcDir=/path/to/etc
InstDir=/path/to/inst

Network extension: To be used in case the DC has more than one
network and a special extension needs to be used for global commands
#NetworkExtension=

3.7.2.7 EAR Authorized users/groups/accounts Authorized users that
are allowed to change policies, thresholds and frequencies are supposed to be
administrators. A list of users, Linux groups, and/or SLURM accounts can be
provided to allow normal users to perform that actions. Only normal Authorized
users can execute the learning phase.

AuthorizedUsers=user1,user2
AuthorizedAccounts=acc1,acc2,acc3
AuthorizedGroups=xx,yy

3.7.2.8 Energy tags Energy tags are pre-defined configurations for some
applications (EAR Library is not loaded). This energy tags accept a user ids,
groups and SLURM accounts of users allowed to use that tag.

General energy tag
EnergyTag=cpu-intensive pstate=1
Energy tag with limited users
EnergyTag=memory-intensive pstate=4 users=user1,user2 groups=group1,group2 accounts=acc1,acc2

32 32

3.7 Configuration 3 ADMIN GUIDE

3.7.2.9 Tags Tags are used for architectural descriptions. Max. AVX fre-
quencies are used in predictor models and are SKU-specific. At least a default
tag is mandatory to be included for a cluster to properly work.

The min_power, max_power and error_power are threshold values that
determine if the metrics read might be invalid, and a warning message to syslog
will be reported if the values are outside of said thresholds. The error_power
field is a more extreme value that if a metric surpasses it, said metric will not
be reported to the DataBase.

A special energy plug-in or energy model can be specified in a tag that will
override the global values previously defined in all nodes that have this tag
associated with them.

Powercap set to 0 means powercap is disabled and cannot be enabled at
runtime. Powercap set to 1 means no limits on power consumption but
a powercap can be set without stopping eard. List of accepted options: -
max_avx512 (GHz) - max_avx2 (GHz) - max_power (W) - min_power (W)
- error_power (W) - coeffs (filename) - powercap (W) - powercap_plugin
(filename) - energy_plugin (filename) - gpu_powercap_plugin (filename) -
max_powercap (W) - gpu_def_freq (GHz) - cpu_max_pstate (0..max_pstate)
- imc_max_pstate (0..max_imc_pstate) - energy_model (filename)

Tag=6148 default=yes max_avx512=2.2 max_avx2=2.6 max_power=500 powercap=1 max_powercap=600 gpu_def_freq=1.4 energy_model=avx512_model.so energy_plugin=energy_nm.so powercap_plugin=dvfs.so gpu_powercap_plugin=gpu.so min_power=50 error_power=600 coeffs=coeffs.default
Tag=6126 max_avx512=2.3 max_avx2=2.9 ceffs=coeffs.6126.default max_power=600 error_power=700

3.7.2.10 Power policies plug-ins

Policy names must be exactly file names for policies installeled in the system.
DefaultPowerPolicy=monitoring
Policy=monitoring Settings=0 DefaultFreq=2.4 Privileged=0
Policy=min_time Settings=0.7 DefaultFreq=2.0 Privileged=0
Policy=min_energy Settings=0.05 DefaultFreq=2.4 Privileged=1

For homogeneous systems, default frequencies can be easily specified using freqs.
For heterogeneous systems it is preferred to use pstates.

Example with pstates (lower pstates corresponds with higher frequencies).
Pstate=1 is nominal and 0 is turbo
#Policy=monitoring Settings=0 DefaultPstate=1 Privileged=0
#Policy=min_time Settings=0.7 DefaultPstate=4 Privileged=0
#Policy=min_energy Settings=0.05 DefaultPstate=1 Privileged=1

Tags can be also used with policies for specific configurations
#Policy=monitoring Settings=0 DefaultFreq=2.6 Privileged=0 tag=6126

33 33

3.7 Configuration 3 ADMIN GUIDE

3.7.2.11 Island description This section is mandatory since it is used for
cluster description. Normally nodes are grouped in islands that share the same
hardware characteristics as well as its database managers (EARDBDS). Each
entry describes part of an island, and every node must be in an island.

There are two kinds of database daemons. One called server and other one
called mirror. Both perform the metrics buffering process, but just one per-
forms the insert. The mirror will do that insert in case the ‘server’ process
crashes or the node fails.

It is recommended for all islands to maintain server-mirror symmetry. For ex-
ample, if the island I0 and I1 have the server N0 and the mirror N1, the next
island would have to point the same N0 and N1 or point to new ones N2 and
N3, not point to N1 as server and N0 as mirror.

Multiple EARDBDs are supported in the same island, so more than one line
per island is required, but the condition of symmetry have to be met.

It is recommended that for an island the server and the mirror to be running
in different nodes. However, the EARDBD program could be both server and
mirror at the same time. This means that the islands I0 and I1 could have the
N0 server and the N2 mirror, and the islands I2 and I3 the N2 server and N0
mirror, fulfilling the symmetry requirements.

A tag can be specified that will apply to all the nodes in that line. If no tag is
defined, the default one will be used as hardware definition.

Finally, if an EARGM is being used to cap power, the EARGMID field is nec-
essary in at least one line, and will specify what EARGM controls the nodes
declared in that line. If no EARGMID is found in a line, the first one found will
be used (ie, the previous line EARGMID).

In the following example the nodes are clustered in two different islands,
but the Island 1 have two types of EARDBDs configurations.

Island=0 DBIP=node1081 DBSECIP=node1082 Nodes=node10[01-80] EARGMID=1

These nodes are in island0 using different DB connections and with a different architecture

Island=0 DBIP=node1084 DBSECIP=node1085 Nodes=node11[01-80] DBSECIP=node1085 tag=6126

These nodes are in island0 and will use default values for DB connection (line 0 for island0) and default tag
#These nodes will use the same EARGMID as the previous ones
Island=0 Nodes=node12[01-80]

Will use default tag
Island=1 DBIP=node1181 DBSECIP=node1182 Nodes=node11[01-80]

Detailed island accepted values: - nodename_list accepts the following formats:
- Nodes=node1,node2,node3 - Nodes=node[1-3] - Nodes=node[1,2,3] - Any

34 34

3.7 Configuration 3 ADMIN GUIDE

combination of the two latter options will work, but if nodes have to be specified
individually (the first format) as of now they have to be specified in their own
line. As an example: - Valid formats: - Island=1 Nodes=node1,node2,node3
- Island=1 Nodes=node[1-3],node[4,5] - Invalid formats: - Island=1
Nodes=node[1,2],node3 - Island=1 Nodes=node[1-3],node4

3.7.3 SLURM SPANK plug-in configuration file

SLURM loads the plug-in through a file called plugstack.conf, which is com-
posed by a list of a plug-ins. In the file etc/slurm/ear.plugstack.conf, there
is an example entry with the paths already set to the plug-in, temporal and
configuration paths.

Example:

required ear_install_path/lib/earplug.so prefix=ear_install_path sysconfdir=etc_ear_path localstatedir=tmp_ear_path earlib_default=off

The argument prefix points to the EAR installation path and it is used to load
the library using LD_PRELOAD mechanism. Also the localstatedir is used to
contact with the EARD, which by default points the path you set during the
./configure using --localstatedir or EAR_TMP arguments. Next to these
fields, there is the field earlib_default=off, which means that by default
EARL is not loaded. Finally there are eargmd_host and eargmd_port if you
plan to connect with the EARGMD component (you can leave this empty).

Also, there are two additional arguments. The first one, nodes_allowed= fol-
lowed by a comma separated list of nodes, enables the plug-in only in that
nodes. The second, nodes_excluded=, also followed by a comma separated list
of nodes, disables the plug-in only in nodes in the list. These are arguments for
very specific configurations that must be used with caution, if they are not used
it is better that they are not written.

Example:

required ear_install_path/lib/earplug.so prefix=ear_install_path sysconfdir=etc_ear_path localstatedir=tmp_ear_path earlib_default=off nodes_excluded=node01,node02

3.7.4 MySQL/PostgreSQL

WARNING: If any EAR component is running in the same machine as the
MySQL server some connection problems might occur. This will not happen
with PostgreSQL. To solve those issues, input into MySQL’s CLI client the
CREATE USER and GRANT PRIVILEGES queries from edb_create -o changing
the portion 'user_name'@'%' to 'user_name'@'localhost' so that EAR’s
users have access to the server from the local machine. There are two ways
to configure a database server for EAR’s usage. - run edb_create -r located
in $EAR_INSTALLATION_PATH/sbin from a node with root access to the MySQL
server. This requires MySQL/PostgreSQL’s section of ear.conf to be correctly

35 35

3.7 Configuration 3 ADMIN GUIDE

written. For more info run edb_create -h. - Manually create the database and
users specified in ear.conf, as well as the required tables. If ear.conf has been
configured, running edb_create -o will output the queries that would be run
with the program that contain all that is needed for EAR to properly function.

For more information about how each ear.conf flag changes the database cre-
ation, see our Database section.

3.7.5 MSR Safe

MSR Safe is a kernel module that allows to read and write MSR without root
permission. EAR opens MSR Safe files if the ordinary MSR files fail. MSR
Safe requires a configuration file to allow read and write registers. You can find
configuration files in etc/msr_safe for Intel Skylake and superior and AMD
Zen and superior.

You can pass these configuration files to MSR Safe kernel mode like this:

cat intel63 > /dev/cpu/msr_allowlist

You can find more information in the official repository

The best way to execute all EAR daemon components (EARD, EARDBD,
EARGM) is by the unit services method.

NOTE EAR uses a MariaDB/MySQL server. The server must be
started before EAR services are executed.

The way to launch the EAR daemons is via unit services. The generated unit ser-
vices for the EAR Daemon, EAR Global Manager Daemon and EAR Database
Daemon are generated and installed in $(EAR_ETC)/systemd. You have to copy
those unit service files to your systemd operating system folder and then use
the systemctl command to run the daemons. Check the EARD, EARDBD,
EARGMD pages to find the precise execution commands.

When using systemctl commands, you can check messages reported to
stderr using journalctl. For instance: journalctl -u eard -f. Note
that if NodeUseLog is set to 1 in ear.conf, the messages will not be
printed to stderr but to $EAR_TMP/eard.log instead. DBDaemonUseLog and
GlobalmanagerUseLog options in ear.conf specifies the output for EARDBD
and EARGM, respectivelly.

Additionally, services can be started, stopped or reloaded on parallel using
parallel commands such as pdsh. As an example: sudo pdsh -w nodelist
systemctl start eard.

The following table lists tools provided with EAR package to work with coeffi-
cients computed during the learning phase.

36 36

https://github.com/LLNL/msr-safe

3.7 Configuration 3 ADMIN GUIDE

Name Description Basic arguments
coeffs
compute

Computes the learning coefficients. <save path> <min_freq>
<nodename>

coeffs_defaultComputes the default coefficients
file.

coeffs_null Creates a dummy configuration file
to be used by EARD.

<coeff_path>,
<max_freq> <min_freq>

coeffs_show Shows the computed coefficients file
in text format.

<file_path>

Use the argument --help to expand the application information and
list the admitted flags.

3.7.6 Examples

Compute the coefficients for the node node1001 in which the minimum frequency
set during the learning phase was 1900000 KHz

./coeffs_compute /etc/coeffs 1900000 node1001

This is a necessary phase prior to the normal EAR utilization and is a kind of
hardware characterization of the nodes. During the phase a matrix of coefficients
are calculated and stored. These coefficients will be used to predict the energy
consumption and performance of each application.

Please, visit the learning phase wiki page to read the manual and the repository
to get the scripts and the kernels.

Some of the core of EAR functionality can be dynamically loaded through a
plug-in mechanism, making EAR more extensible and dynamic than previous
version since it is not needed to reinstall the system to add, for instance, a
new policy or a new power model. It is only needed to copy the file in the
$EAR_INSTALL_PATH/lib/plugins folder and restart some components. The
following table lists the current EAR functionalities designed with a plu-in mech-
anism:

Plug-in Description
Power model Energy models used by energy policies.
Power policies Energy policies themselves.
Energy readings Node energy readings.
Tracing Execution traces.
Report Data reporting.
Powercap Powercap management.

37 37

https://gitlab.bsc.es/ear_team/ear_learning/-/wikis/home
https://gitlab.bsc.es/ear_team/ear_learning

3.7 Configuration 3 ADMIN GUIDE

3.7.7 Considerations

• Plug-in paths is set by default to $EAR_INSTALL_PATH/lib/plugins.
• Default power model library is specified in ear.conf (energy_model op-

tion). By default EAR includes a basic_model.so and avx512_model.so
plug-ins.

• The node energy readings library is specified at ear.conf in
the energy_plugin option for each tag. Several plug-ins are in-
cluded: energy_nm.so (uses Intel NodeManager IPMI commands),
energy_rapl.so (uses a node energy estimation based on DRAM and
PACKAGE energy provided by RAPL), energy_sd650.so (uses the high
frequency IPMI hardware included in Lenovo SD650 systems) and the
energy_inm_power_freeipmi.so, which uses the Intel Node Manager
power reading commands and requires the freeipmi library.

• Power policies included in EAR are: monitoring.so, min_energy.so,
min_time.so, min_energy_no_models.so and min_time_no_models.so.
The list of policies installed is automatically detected by the EAR plug-in.
However, only policies included in ear.conf can be used.

• The tracing is an optional functionality. It is included to provide addi-
tional information or to generate runtime information.

• Report plug-ins include different options to report EAR data from the
different components. By default it is included the eard, eardbd, csv_ts,
mysql/psql (depending on the installation). Plug-ins to be loaded by de-
fault can be specified on the ear.conf.

Note SLURM Plugin does not fit in this philosophy, it is a core
component of EAR and can not be replaced by any third party
development.

Some of the core of EAR functionality can be dynamically loaded through a
plug-in mechanism, making EAR more extensible and dynamic than previous
version since it is not needed to reinstall the system to add, for instance, a
new policy or a new power model. It is only needed to copy the file in the
$EAR_INSTALL_PATH/lib/plugins folder and restart some components. The
following table lists the current EAR functionalities designed with a plu-in mech-
anism:

Plug-in Description
Power model Energy models used by energy policies.
Power policies Energy policies themselves.
Energy readings Node energy readings.
Tracing Execution traces.
Report Data reporting.
Powercap Powercap management.

38 38

3.8 DB Tables 3 ADMIN GUIDE

3.7.8 Considerations

• Plug-in paths is set by default to $EAR_INSTALL_PATH/lib/plugins.
• Default power model library is specified in ear.conf (energy_model op-

tion). By default EAR includes a basic_model.so and avx512_model.so
plug-ins.

• The node energy readings library is specified at ear.conf in
the energy_plugin option for each tag. Several plug-ins are in-
cluded: energy_nm.so (uses Intel NodeManager IPMI commands),
energy_rapl.so (uses a node energy estimation based on DRAM and
PACKAGE energy provided by RAPL), energy_sd650.so (uses the high
frequency IPMI hardware included in Lenovo SD650 systems) and the
energy_inm_power_freeipmi.so, which uses the Intel Node Manager
power reading commands and requires the freeipmi library.

• Power policies included in EAR are: monitoring.so, min_energy.so,
min_time.so, min_energy_no_models.so and min_time_no_models.so.
The list of policies installed is automatically detected by the EAR plug-in.
However, only policies included in ear.conf can be used.

• The tracing is an optional functionality. It is included to provide addi-
tional information or to generate runtime information.

• Report plug-ins include different options to report EAR data from the
different components. By default it is included the eard, eardbd, csv_ts,
mysql/psql (depending on the installation). Plug-ins to be loaded by de-
fault can be specified on the ear.conf.

Note SLURM Plugin does not fit in this philosophy, it is a core
component of EAR and can not be replaced by any third party
development.

3.8 DB Tables

EAR’s database consists of the following tables: - Jobs: job information
(app_id, user_id, job_id, step_id, etc). One record per JOBID.STEPID
is created in the DB. - Applications: this table’s records serve as a link
between Jobs and Signatures, providing an application signature (from EARL)
for each node of a job. One record per JOBID.STEPID.NODENAME is
created in the DB. - Signatures: EARL computed signature and metrics.
One record per JOBID.STEPID.NODENAME is created in the DB when the
application is executed with EARL. - GPU_signatures: EARL computed
GPU signatures. This information belongs to a loop or application signature.
If the signature is from a node with 4 GPUs there will be 4 records. -
Periodic_metrics: node metrics reported every N seconds (N is defined
in ear.conf). - Periodic_aggregations: sum of all Periodic_metrics in a
time period to ease accounting in ereport command and EARGM, as well
as reducing database size (Periodic_metrics of older periods where precision

39 39

3.9 Database creation and ear.conf 3 ADMIN GUIDE

at node level is not needed can be deleted and the aggregations can be used
instead). - Loops: similar to Applications, but stores a Signature for each
application loop detected by EARL, instead of one per each application. This
table provides internal details of running applications and could significantly
increase the DB size. - Events: EARL events report. Events includes
frequency changes, and internal EARL decisions such as turning off the
DynAIS algorithm. - Global_energy: contains reports of cluster-wide energy
accounting set by EARGM using the parameters in ear.conf. One record
every T1 period (defined at ear.conf) is reported. - Power_signatures: Basic
time and power metrics that can be obtained without EARL. Reported for
all applications. One record per JOBID.STEPID.NODENAME is created
in the DB. - Learning_applications: same as Applications, restricted to
learning phase applications. - Learning_jobs: same as Jobs, restricted to
learning phase jobs. - Learning_signatures: same as Signatures, restricted
to learning phase job metrics.

NOTE In order to have GPU_signatures table created and Peri-
odic_metrics containing GPU data, the DataBase must be created
(if you follow the edb_create approach, see below section) with
GPUs enabled at the compilation time. See how to update from
previous versions if you are updating EAR from a release not having
GPU metrics.

3.9 Database creation and ear.conf

When running edb_create some tables might not be created, or may have some
quirks, depending on some ear.conf settings. The settings and alterations are
as follows:

• DBReportNodeDetail: if set to 1, edb_create will create two additional
columns in the Periodic_metrics table for Temperature (in Celsius) and
Frequency (in Hz) accounting.

• DBReportSigDetail: if set to 1, Signatures will have additional fields for
cycles, instructions, and FLOPS1-8 counters (number of instruction by
type).

• DBMaxConnections: this will restrict the number of maximum simultane-
ous commands connections.

If any of the settings is set to 0, the table will have fewer details but the table’s
records will be smaller in stored size.

Any table with missing columns can be later altered by the admin to include
said columns. For a full detail of each table’s columns, run edb_create -o with
the desired ear.conf settings.

40 40

3.10 Information reported and ear.conf 3 ADMIN GUIDE

3.10 Information reported and ear.conf

There are various settings in ear.conf that restrict data reported to the
database and some errors might occur if the database configuration is different
from EARDB’s.

• DBReportNodeDetail: if set to 1, node managers will report temperature,
average frequency, DRAM and PCK energy to the database manager,
which will try to insert it to Periodic_metrics. If Periodic_metrics does
not have the columns for both metrics, an error will occur and nothing will
be inserted. To solve the error, set ReportNodeDetail to 0 or manually
update Periodic_metrics in order to have the necessary columns.

• DBReportSigDetail: similarly to ReportNodeDetail, an error will occur
if the configuration differs from the one used when creating the database.

• DBReportLoops : if set to 1, EARL detected application loops will be
reported to the database, each with its corresponding Signature. Set to 0
to disable this feature. Regardless of the setting, no error should occur.

If Signatures and/or Periodic_metrics have additional columns but their respec-
tive settings are set to 0, a NULL will be set in those additional columns, which
will make those rows smaller in size (but bigger than if the columns did not
exist).

Additionally, if EAR was compiled in a system with GPUs (or with the GPU
flag manually enabled), another table to store GPU data will be created.

3.11 Updating from previous versions

3.11.1 From EAR 3.4 to 4.0

Several fields have to be added in this update. To do so, run the following
commands to the database’s CLI client:

ALTER TABLE Signatures ADD COLUMN avg_imc_f INT unsigned AFTER avg_f;
ALTER TABLE Signatures ADD COLUMN perc_MPI FLOAT AFTER time;
ALTER TABLE Signatures ADD COLUMN IO_MBS FLOAT AFTER GBS;

ALTER TABLE Learning_signatures ADD COLUMN avg_imc_f INT unsigned AFTER avg_f;
ALTER TABLE Learning_signatures ADD COLUMN perc_MPI FLOAT AFTER time;
ALTER TABLE Learning_signatures ADD COLUMN IO_MBS FLOAT AFTER GBS;

3.11.2 From EAR 3.3 to 3.4

If no GPUs were used and they will not be used there are no changes necessary.

41 41

5 CHANGELOG

If GPUs were being used, type the following commands to the database’s CLI
client:

ALTER TABLE Signatures ADD COLUMN min_GPU_sig_id INT unsigned, ADD COLUMN max_GPU_sig_id INT unsigned;
ALTER TABLE Learning_signatures ADD COLUMN min_GPU_sig_id INT unsigned, ADD COLUMN max_GPU_sig_id INT unsigned;
CREATE TABLE IF NOT EXISTS GPU_signatures (id INT unsigned NOT NULL AUTO_INCREMENT, GPU_power FLOAT NOT NULL, GPU_freq INT unsigned NOT NULL, GPU_mem_freq INT unsigned NOT NULL, GPU_util INT unsigned NOT NULL, GPU_mem_util INT unsigned NOT NULL, PRIMARY KEY (id));

If no GPUs were being used but now are present, use the previous query plus
the following one:

ALTER TABLE Periodic_metrics ADD COLUMN GPU_energy INT;

4 Architectures and schedulers supported”

4.1 CPU Models

• Intel Haswell/Skylake/IceLake monitoring and optimization.
• AMD EPYC Rome monitoring.

4.2 GPU models

• NVIDIA: Node and application monitoring.

4.3 Schedulers

• EAR offers a SLURM SPANK plugin to be transparently used when using
SLURM workload manager. This plug-in allows to be integrated as part
of the SLURM submission options. See the user guide.

• Using the EARD api new_job/end_job functions EAR can be also be
transparently used with other schedulers such as LSF or PBS through the
prolog/epilog mechanism.

5 Changelog

5.1 EAR 4.1

• Meta EARGM.
• Support for N jobs in a node.
• CPU power models for N jobs.
• Python apps loaded automatically.
• Support for MPI-Python through environment variable.
• Report plug-ins in EARL, EARD and EARDBD.

42 42

5.2 EAR 4.0 5 CHANGELOG

• PostgreSQL support.
• Soft cluster powercap.
• New AMD virtual P-states support using max frequency and different

P-states.
• New RPC system in EARL-EARD communication (including locks).
• Partial support for different schedulers (PBS).
• New task messages between EARPlug and EARD.
• New DCMI and INM-Freeipmi based energy plug-ins.
• IceLake support.
• Likwid support for IceLake memory bandwidth computation.
• msr_safe
• HEROES plug-in.

5.2 EAR 4.0

• AMD virtual p-states support and DF frequency management included
• AMD optimization based on min_energy and min_time
• GPU optimization in low GPU utilization phases
• Application phases IO/MPI/Computation detection included
• Node powercap and cluster powercap implemented: Intel CPU and

NVIDIA GPUS tested. Meta EAR-GM not released
• IO, Percentage of MPI and Uncore frequency reported to DB and included

in eacct
• econtrol extensions for EAR health-check

5.3 EAR 3.4

• Automatic loading of EAR library for MPI applications (already in 3.3),
OpenMP, MKL and CUDA applications. Programming model detection
is based on dynamic symbols so it could not work if symbols are statically
included.

• AMD monitoring support.
• TAGS support included in policies.
• Request dynamic in eard_rapi.
• GPU monitoring support in EAR library for NVIDIA devices.
• Node powercap and cluster power cap under development.
• papi dependency removed.

5.4 EAR 3.3

• eacct loop signature reported.
• EAR loader included.
• GPU support migrated to nvml API.

43 43

5.5 EAR 3.26 FAQS WHEN USING EAR FLAGS WITH SLURM PLUGIN

• GPU support in configure.
• TAGS supported in ear.conf.
• Heterogeneous clusters specification supported.
• EARGM energy capping management improved.
• Internal messaging protocol improved.
• Average CPU frequency and Average IMC frequency computation im-

proved.

5.5 EAR 3.2

• GPU monitoring based on nvidia-smi command.
• GPU power reported to the DB using NVIDIA commands.
• Postgresql support.
• freeipmi dependence removed.

6 FAQS when using EAR flags with SLURM
plugin

1) How to see EAR configuration and metrics at runtime? use –
-ear-verbose=1.

2) User authorized “issues”. The following list of ear flags are only allowed to
Authorized users (ear.conf): ear-cpufreq, ear-tag, ear-learning,
ear-policy-th.

Action: Check ear option and user authorization (ear.conf).

AuthorizedUsers=user1,user2
AuthorizedAccounts=acc1,acc2,acc3
AuthorizedGroups=xx,yy

If user is not authorized it means it is the expected result.

3) Why is a different energy policy other than the selected one being applied
(validated with --ear-verbose=1)? The selected policy may not be en-
abled for all users. Energy policies can be configured to be enabled to all
users or not.

Action: Check policy configuration (ear.conf) and user authorization
(ear.conf).

#Enabled to all users
Policy=monitoring Settings=0 DefaultFreq=2.4 Privileged=0
#Enabled to authorized users
Policy=monitoring Settings=0 DefaultFreq=2.4 Privileged=1

If not enabled or not authorized it is the expected result.

44 44

6 FAQS WHEN USING EAR FLAGS WITH SLURM PLUGIN

4) How to disable EAR library explicitly: use –ear=off.

5) How to apply EAR settings to all srun/mpirun calls inside a job? Set
options in #SBATCH headers.

#!/bin/bash
#SBATCH -N 1
#SBATCH –ear-policy=min_time
#application 1 and 2 will run with min_time
srun application1
srun application2

6) How to apply different EAR settings to different srun/mpirun calls inside
a job? Set options for each step id.

srun –ear-policy=min_time application
srun –ear-policy=min_energy application

7) How to see which energy policies are installed? srun --help

Comment: Installed policies, it is possible a user is not allowed to run it.

8) How to set EAR flags with mpirun (intel)? Depending on the intel mpi
version. Before version 2019, mpirun had 2 parameters to specify slurm
options.

mpirun –bootstrap=slurm -bootstrap-exec-args=”—ear-verbose=1”

Since version 2019, SLURM options must be specified using environment vari-
ables:

export I_MPI_HYDRA_BOOTSTRAP=slurm
export I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS --ear-verbose=1"

9) How to set EAR flags with mpirun (openmpi)? OpenMPI needs an
extra support when srun is not used. EAR’s erun command must be
used.

mpirun erun –ear-policy=min_energy --program=application

10) An application is using OpenMPI and it blocks when running with EARL
and mpirun: Use erun.

11) An application works without EAR (–ear=off) and fails with EARL re-
porting errors related with dynamic libraries:

Action: Check if the application is using right EAR mpi version. If environ-
ment variable is set in mpi modules, it must be automatic. Otherwise, validate
whether --ear-mpi-dist is present when needed.

12) How to collect more detailed metrics than available in the DB. Use
--ear-user-db flag to generate csv files with all EARL collected metrics.

45 45

7 KNOWN ISSUES

13) How to collect paraver traces? Use the environment variables to enable
the trace collection and to specify the path.

SLURM_EAR_TRACE_PLUGIN$EAR_INSTALL_PATH/lib/plugins/tracer/tracer_paraver.so
SLURM_EAR_TRACE_PATH=TRACES_PARAVER/

14) User asks for application metrics with eacct and NO-EARL appears in
some of the columns in the output: This means EARL was not loaded with
the application or the application fails before MPI_Finalize, nor reporting
application data

Action: Check if application was executed with EARL and it didn’t fail.

15) After some time, user asks for an application metrics with eacct and
application is not reported.

Action: Try again after some minutes (applications are not reported immedi-
ately).

7 Known issues

• If a Python + MPI application is launched with the intention to have
EARL loaded, and libear*.so cannot be found, the application will crash.

46 46

	Introduction
	License
	Publications

	User guide
	Running jobs with EAR
	Use cases
	MPI applications
	Hybrid MPI + (OpenMP, CUDA, MKL) applications
	Python (not MPI)
	Python + MPI applications
	OpenMP, CUDA, MK (non-MPI) applications
	Other application types or frameworks

	MPI + srun
	EAR job submission flags
	CPU frequency selection
	GPU frequency selection

	MPI + mpirun
	Intel MPI
	OpenMPI
	MPI4PY
	Using additional MPI profiling libraries/tools

	Examples
	sbatch + EARL + srun
	EARL + mpirun
	erun

	Job accounting (eacct)
	eacct usage examples

	Jobs executed without the EAR library: Basic Job accounting

	Admin guide
	EAR Components
	Quick Installation Guide
	EAR Requirements
	Compiling and installing EAR
	Deployment and validation
	EAR Library versions: MPI vs. Non-MPI

	Installing from RPM
	Installation content

	Next steps
	Architecture
	EARD: Node Manager
	EARDBD: Database Manager
	EARGMD: Global Manager
	EARL: The EAR Library
	EARLo: EAR Loader
	EAR SLURM plugin

	Installation from source
	Requirements
	Compilation and installation guide summary
	Configure options
	Adding required libraries installed in custom locations
	Additional configure flags
	Pre-installation fast tweaks
	Library distributions/versions
	Other useful flags
	Installation content
	Fine grain tuning of EAR options
	Next step

	Configuration
	Configuration requirements
	EAR configuration file
	SLURM SPANK plug-in configuration file
	MySQL/PostgreSQL
	MSR Safe
	Examples
	Considerations
	Considerations

	DB Tables
	Database creation and ear.conf
	Information reported and ear.conf
	Updating from previous versions
	From EAR 3.4 to 4.0
	From EAR 3.3 to 3.4

	Architectures and schedulers supported”
	CPU Models
	GPU models
	Schedulers

	Changelog
	EAR 4.1
	EAR 4.0
	EAR 3.4
	EAR 3.3
	EAR 3.2

	FAQS when using EAR flags with SLURM plugin
	Known issues

