EAR: Reference Manual
4.3

1 Introduction 1
1A LICeNSe . . . e e e e e e e e 1
1.2 Publications e 2

2 User guide 3
21 USECASES o e e 3

211 MPlapplications e e 3
2.1.1.1 Hybrid MPI + (OpenMP, CUDA, MKL) applications 3

2.1.1.2 Python MPl applications 4

2.1.1.3 Running MPI applications on SLURM systems 4
2.1.2Non-MPl applications e 4
2121 Python L 4
2.1.220penMP, CUDA and Intel MKL 5

2.1.3 Other application types or frameworkso 5

2.1.4 Using EAR inside Singularity containers Lo 5

22 Retrieving EAR data 6
2.3 EAR job submissionflags 6
2.3.1 CPUfrequency selection e e 7
2.3.2GPU frequency selection Lo 7

24 Examples . . .o e e 8
24 0 srunexamples L e 8
2.42sbatch + EARL +Srun o e 8

243 EARL+mMPIrUN e e 9
2431 1Intel MPL . . o . e 9
2.4320penMPl . . . e 9

25 EAR job Accounting (eacct) e 9
251 Usageexamples e e e 9

2.6 Job energy optimization: EARL policies 10

3 EAR commands 11
3.1 EARjob Accounting (eacct) 11
3.2 EAR system energy Report (ereport) 14

21 Examples e 15
3.22 EAR Control (econtrol) e 15
3.3 Database commands L e e 16
33.1edb create e e 16
3.32edb_clean_pm L e e 16
3.83edb_clean_apps e 17
BAEBIUN . . L e e 17
3.5 ar-info . .o e 18

4 Environment variables 21

4.1 Loading EAR Library e 21

Generated by Doxygen

4.1.1 EAR_LOADER_APPLICATION e e 21
41.2EAR_LOAD_MPI_VERSION 22

4.2 Report plug-ins L e e e e e 22
421 EAR_REPORT_ADD 22
4.3Verbosity e e e 22
4.3.1 EARL_VERBOSE_PATH 22

4.4 Frequency management e e e e e e e e e e 23
441 EAR_GPU DEF FREQ o e e 23
442 EAR_JOB_EXCLUSIVE_MODE e 23
4.4.3 Controlling Uncore/Infinity Fabric frequencyo . 23
4431 EAR_SET IMCFREQ. e e 23

4.4.3.2 EAR_MAX_IMCFREQ and EAR_MIN_IMCFREQ 24

444 LoadBalancing e 24
4.4.5 Support for Intel(R) Speed Select Technology 24
4451 EAR_PRIO_TASKS e 25
4452EAR_PRIO_CPUS e 26

4.4.6 Disabling EAR's affinity masksusage 26
45Datagathering e e 26
451 EAR_GET_MPI_STATS e e e 26
452 EAR_TRACE_PLUGIN 28
453 EAR_TRACE_PATH 28
454 REPORT_EARL_EVENTS s e 28
4541 Eventtypes L 29

5 Admin guide 31
51 EARCOMPONENtS o e e e e 31
5.2 Quick Installation Guide L e 32
5.2.1 EAR Requirements e 32
5.2.2 Compiling andinstalling EAR L 33
5.2.3 Deployment and validation 33
5.2.3.1 Monitoring: Compute nodeand DB 33

5.2.3.2 Monitoring: EAR plugin 35

5.2.4 EAR Library versions: MPlvs. Non-MPI o 36

5.3 Installing from RPM e 36
5.3.1 Installationcontent L 37
5.832 RPMrequirements e 37

5.4 Starting Services L e e 38
5.5 Updating EAR with a new installation L 39
B.BNextsteps e 39
6 Installation from source 41
6.1 Requirements L e e e e 41
6.2 Compilation and installation guide summary L 42

Generated by Doxygen

6.3 Configure OptionNs L e e e e
6.4 Pre-installation fasttweaks L
6.5 Library distributions/versionso
6.6 Otheruseful flags o e e e
6.7 Installation content L
6.8 Fine grain tuning of EAR options
B.9Nextstep

7 Architecture

7.1 EAR Node Manager o e e
7AAOVErVIEW . . .
71.2Requirements L L
7.1.3 Configuration L e
744 EXecUtion
7.1.5 Reconfiguration

7.2 EAR Database Manager e e
7.2 Configuration L
722 Executiono

7.3 EAR Global Manager e
731 POWErcapping o e e e e e e
7.3.2Configuration e e
7.3 3 Execution

7.4The EAR Library e
TATOVEIVIEW . . . o e e
7.4.2Configuration L
7A43USa0e o
744 Policies L e
TAS5EARAPIL . . e

7H5EARLoader e

7.6 EARSLURMDPIUGIN e
7.6.1 Configuration L

8 EAR configuration

8.1 Configuration requirements L e e
8.1.1 EARpaths e
8.1.2DBcreationand DB server
8.1.3EARSLURMODPIUG-IN. e

8.2 EAR configuration file e

8.2.0.1 Database configuration
8.2.1 EARD configuration
8.2.2 EARDBD configuration e
8.2.3 EARL configuration e e
8.2.4 EARGM configuration e

42
44
44
44
44
45
45

47
47
47
47
47
48
48
48
48
49
49
49
50
50
50
50
52
52
52
53
54
55
55

Generated by Doxygen

8.2.4.1 Common configuration L 60

8.2.4.2 EAR Authorized users/groups/accounts Lo 60
8.243Energytags e 60

8.25Tags e 60

8.2.5.1 Power policies plug-ins 61

8.2.6 Island description L L e e 62

8.3 SLURM SPANK plug-in configurationfile 63
8.3.1 MySQL/PostgreSQL 63
8.32MSR Safe e e 63

9 Learning phase 65
9.1 T00IS . . . o e e e 65

9. 1.1 Examples L e e 65

10 EAR plug-ins 67
10.1 Considerations L e e e e e e 67

11 EAR Powercap 69
111 NOdE POWEICAD o ot o e e e e e e e e e 69
11.2CIUSIEr POWEICAD .« .« o o e e e e e e e e e e 69
11.2.1 Soft clusterpowercap 70

11.22 Hard clusterpowercap o o e e e 70

11.3 Possible powercap values e e 70
11.4 Example configurations L 70
11.5 Valid configurations L e 72

12 Report plugins 75
12.1 Prometheus report plugin L e e e e e 75
12.1.1 Requirements L 75

12.1.2 Installation L 75

12.1.3 Configuration L e 76

122 EXamon e e e e e e e e e 76
12.2.1 Compilation and installation 76
123DCDB 77
12.3.1 Compilation and configuration 77

12.4 Sysfs Report Plugin e 77
12.4.1 Namespace Format e 77

12.4.2 Metric File Naming Format 77

12.4.3 Metrics reported L L 78

13 EAR Database 79
131 Tables e 79
13.1.1 Application information L 79

13.1.2 Systemmonitoring L 79

Generated by Doxygen

13.1.83Events e
13.1.4 EARGM reports o o e e e
13.1.5 Learningphase
13.2 Creation and maintenance L e
13.3 Database creation and ear.conf L
13.4 Information reported and ear.confo
13.5 Updating from previous versions L e e e
1351 From EAR 4.2104.3
135.2From EAR4.1104.2 e
1353 FromEAR3.4104.0
1354 From EAR3.3103.4 L
13.6 Database tables description
13.6.1JObS . . . L
13.6.2 Applications L
13.6.3Signatures L e
13.6.4 Power_signatures L
13.6.5 GPU_signatures L
13.6.6 LOOPS e
13.6.7Events
13.6.8 Global_energy e
13.6.9 Periodic_metrics e e e e e e e

13.6.10 Periodic_aggregations L

14 Supported systems
141 CPUModels e e e e
142GPUmMoOdels e
14.3 Schedulers e

15 Changelog
151 EAR A3 . o e e e
15.2EAR 4.2 . . e e
153 EAR4A AT .« o e e
154 EAR AT L o e e e
155 EAR 4.0 e e
156 EAR 3.4 . . . e
15.7 EAR 3.3 . . . e e e
15.8 EAR 3.2 e e

16 FAQs
16.1 EAR general questions L e e e e e
16.2 Using EAR flags with SLURM plug-in o e e
16.3 Using additional MPI profiling libraries/tools
16.4 Jobs executed without the EAR Library: Basic Job accounting

80
80
80
80
80
81
82
82
82
82
83
83
83
84
84
85
85
86
86
87
87
88

89
89
89
89

91
91
91
92
92
93
93
93
93

Generated by Doxygen

vi

16.5 Troubleshooting

17 Known issues

Generated by Doxygen

Chapter 1

Introduction

Energy Aware Runtime (EAR) is an energy management framework for super computers. EAR contains different
components, all together provide three main services:

1. An easy-to-use and lightweight optimization service to automatically select the optimal CPU, memory and
GPU frequency according to the application and the node characteristics. This service is provided by two
components: the EAR Library (EARL) and the EAR Node Manager (EARD).

EARL is a smart component which is loaded next to the application and offers application metrics monitor-
ing and it can select the frequencies based on the application behaviour on the fly. The Library is loaded
automatically through the EAR Loader (EARLO) and it can be easly integrated with different system batch
schedulers (e.g., SLURM).

2. A complete energy and performance accounting and monitoring system mainly based on relational SQL
databases (MariaDB and PostgreSQL are currently supported). The energy accounting system is config-
urable in terms of application details and update frequency.

The EAR Database (EARDBD) is used to cache those metrics prior to DB insertions and optimize the con-
nectivity with the DB server. Current EAR version already includes several report plugins for non-relational
Databases such as EXAMON.

3. A cluster energy manager to monitor and control the energy consumed in the system through the EAR
Global Manager (EARGMD). This control is configurable, it can dynamically adapt policy settings based on
global energy limits or just offer global cluster monitoring.

Visit the architecture page for a detailed description of each of these components. The user guide contains informa-
tion about how to user EAR as an end user in a production environment. The admin guide has all the information
related to the installation and setting up, as well as all core components details.

1.1 License

EAR is a open source software and it is licensed under both the BSD-3 license and EPL-1.0 license. Full text of
both licenses can be found in COPYING.BSD and COPYING.EPL files.

Contact: ear-support@bsc.es

Generated by Doxygen

mailto:ear-support@bsc.es

2 Introduction

1.2 Publications

J. Corbalan, L. Alonso, J. Aneas and L. Brochard, "Energy Optimization and
Analysis with EAR," 2020 IEEE International Conference on Cluster Computing
(CLUSTER), 2020, pp. 464-472, doi: 10.1109/CLUSTER49012.2020.00067.

J. Corbalan, O. Vidal, L. Alonso and J. Aneas, "Explicit uncore frequency
scaling for energy optimisation policies with EAR in Intel architectures,”
2021 IEEE International Conference on Cluster Computing (CLUSTER), 2021,
pp. 572-581, doi: 10.1109/Cluster48925.2021.00089.

J. Corbalan, L. Alonso, C. Navarrete and C. Guillen, "Soft Cluster Powercap
at SuperMUC-NG with EAR," 2022 IEEE 13th International Green and Sustainable
Computing Conference (IGSC), Pittsburgh, PA, USA, 2022, pp. 1-8, doi: 10.+«
1109/IGSC55832.2022.9969360

Generated by Doxygen

https://ieeexplore.ieee.org/document/9229570
https://ieeexplore.ieee.org/document/9229570
https://ieeexplore.ieee.org/document/9229570
https://ieeexplore.ieee.org/document/9555970
https://ieeexplore.ieee.org/document/9555970
https://ieeexplore.ieee.org/document/9555970
https://ieeexplore.ieee.org/document/9555970
https://ieeexplore.ieee.org/document/9969360
https://ieeexplore.ieee.org/document/9969360
https://ieeexplore.ieee.org/document/9969360
https://ieeexplore.ieee.org/document/9969360

Chapter 2

User guide

EAR was first designed to be usable 100% transparently by users, which means that you can run your applications
enabling/disabling/tuning EAR with the less effort for changing your workflow, e.g., submission scripts. This is
achieved by providing integrations (e.g., plug-ins, hooks) with system batch schedulers, which do all the effort to
set-up EAR on job submission. By now, SLURM is the batch scheduler full compatible with EAR thanks to
EAR's SLURM SPANK plug-in.

With EAR's SLURM plug-in, running an application with EAR is as easy as submitting a job with either srun,
sbatch or mpirun. The EAR Library (EARL) is automatically loaded with some applications when EAR is
enabled by default.

Check with the ear-info command if EARL is on/off by default. If its of f, use ——ear=on option offered by
EAR SLURM plug-in to enable it. For other schedulers, a simple prolog/epilog command can be created to provide

transparent job submission with EAR and default configuration. The EAR development team had worked also with
OAR and PBSPro batch schedulers, but currently there is no any official stable nor supported feature.

2.1 Use cases

2.1.1 MPI applications

EARL is automatically loaded with MPI applications when EAR is enabled by default (check ear—-info). EAR
supports the utilization of both mpirun/mpiexec and srun commands.

When using sbacth/srunorsalloc, Intel MPIand OpenMPI are fully supported. When using specific

MPI flavour commands to start applications (e.g., mpirun, mpiexec.hydra), there are some keypoints which
you must take account. See next sections for examples and more details.

2.1.1.1 Hybrid MPI + (OpenMP, CUDA, MKL) applications

EARL automatically supports this use case. mpirun/mpiexec and srun are supported in the same manner as
explained above.

Generated by Doxygen

https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html#gs.mufipm
https://www.open-mpi.org/

4 User guide

2.1.1.2 Python MPI applications

EARL cannot detect automatically MPI symbols when Python is used. On that case, an environment variable used
to specify which MPI flavour is provided.

Export SLURM_EAR_LOAD_MPI_VERSION environment variable with either intel or open mpi values, e.g.,
export SLURM_EAR_LOAD_MPI_VERSION="open mpi", whose are the two MPI implementations 100%
supported by EAR.

2.1.1.3 Running MPI applications on SLURM systems

Using srun command Running MPI applications with EARL on SLURM systems using srun command is the
most straightforward way to start using EAR. All jobs are monitored by EAR and the Library is loaded by default
depending on the cluster configuration. To run a job with srun and EARL there is no need to load the EAR
module.

Even though it is automatic, there are few flags than can be selected at job submission. They are provided by EAR's
SLURM SPANK plug-in. When using SLURM commands for job submission, both Intel and OpenMPI implementa-
tions are supported.

2.1.1.3.1 Using Using mpirun/mpiexec command To provide an automatic loading of the EAR library, the only
requirement from the MPI library is to be coordinated with the scheduler.

Intel MPI Recent versions of Intel MPI offers two environment variables that can be used to guarantee the correct
scheduler integrations:

« I_MPI_HYDRA_BOOTSTRAP sets the bootstrap server. It must be set to slurm.

e I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS sets additional arguments for the bootstrap server.
These arguments are passed to SLURM, and they can be all the same as EAR's SPANK plug-in provides.

You canread here the Intel environment variables guide.

OpenMPI For joining OpenMPI and EAR it is highly recommended to use SLURM's srun command. When
using mpirun, as OpenMPI is not fully coordinated with the scheduler, EARL is not automatilly loaded on all
nodes. Therefore EARL will be disabled and only basic energy metrics will be reported. To provide support for this
workflow, EAR provides erun command. Read the corresponding examples section for more information about how
to use this command.

MPI4PY To use MPI with Python applications, the EAR Loader cannot automatically detect symbols to classify the
application as Intel or OpenMPI. In order to specify it, the user has to define the SLURM_LOAD_MPI_VERSION
environment variable with the values intel or open mpi. It is recommended to add in Python modules to make it easy
for final users.

2.1.2 Non-MPI applications
2.1.2.1 Python

Since version 4.1 EAR automatically executes the Library with Python applications, so no action is needed. You
must run the application with srun command to pass through the EAR's SLURM SPANK plug-in in order to en-
able/disable/tuning EAR. See EAR submission flags provided by EAR SLURM integration.

Generated by Doxygen

https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/hydra-environment-variables.html

2.1 Use cases 5

2.1.2.2 OpenMP, CUDA and Intel MKL

To load EARL automatically with non-MPI applications it is required to have it compiled with dynamic symbols and
also it must be executed with srun command. For example, for CUDA applications the ——cudart=shared
option must be used at compile time. EARL is loaded for OpenMP, MKL and CUDA programming models when
symbols are dynamically detected.

2.1.3 Other application types or frameworks

For other programming models or sequential apps not supported by default, EARL can be forced to be loaded
by setting SLURM_EAR_LOADER_APPLICATION enviroment variable, which must be defined with the application
name. For example:

#!/bin/bash

export SLURM_EAR_LOADER_APPLICATION=my_app
srun my_app

2.1.4 Using EAR inside Singularity containers

Apptainer (formerly Singularity) is an open source technology for containerization. It is widely used in HPC
contexts because the level of virtualization it offers enables the access to local services. It allows for geater repro-
ducibility, making the programs less dependant on the environment they are being run on.

An example singularity command could look something like this:

singularity exec $IMAGE program

where IMAGE is an environment variable that contains the path of the Singularity container, and program is the
executable to be run in the image.

In order to be able to use EAR inside the container two actions are needed:

« Binding EAR paths to make them visible in the container.

» Exporting some environment variables to the execution environment to make them available during the exe-
cution.

To bind folders there are two options: (1) using the environment variable SINGULARITY_BIND/APPTAINER«
_BIND or (2) using the —-B flag when running the container. 1 is a comma separated string of pairs of paths
[path_1]1[[:path_2] [:perms]] such that path_17in local will be mapped into path_2 in the image with the
permissions set in perms, which can be r or rw. Specifying path_2 and perm is optional. If they are not specified
path_1 will be bound in the same location.

To make EAR working the following paths sould be added to the binding configuration:
 SEAR_INSTALL_PATH, SEAR_INSTALL_PATH/bin, $SEAR_INSTALIL_PATH/lib, $SEAR_TMP

You should have an EAR module to have the above environment variables. Contact with your system administrator
for more information.

Once paths are deployed, to execute (for example) an OpenMPI application inside a Singularity/Apptainer enabling
the EAR Library just the following is needed:

module load ear
mpirun -np <# processes> singularity exec $IMAGE erun --ear=on --program="program args"

A more complete example would look something like this:

export IMAGE=[path_to_image]/ubuntu_ompi.sif

export BENCH_PATH=[path_to_benchmark]

export APPTAINER_BIND="SEAR_INSTALL_PATH:$EAR_INSTALL_PATH:ro, SEAR_TMP:SEAR_TMP:rw"
export APPTAINERENV_EAR_REPORT_ADD=sysfs.so

mpirun -np 64 singularity exec $IMAGE $EAR_INSTALL_PATH/bin/erun \
—-—ear=on --ear-verbose=1 \
——program=$BENCH_PATH/bt-mz.D. 64

Note that the example exports APPTAINERENV_EAR_REPORT_ADD to set the environment variable
"EAR_REPORT_ADD' to load “sysfs’ report plug-in.

Generated by Doxygen

https://apptainer.org/

6 User guide

2.2 Retrieving EAR data

As a job accounting and monitoring tool, EARL collects some metrics that you can get to see or know your ap-
plications behaviour. The Library is doted with several modules and options to be able to provide different kind of
information.

As a very simple hint of your application workload, you can enable EARL verbosity to get loop data at run-
time. The information is shown at stderr by default. Read how to set up verbosity at submission time and
verbosity environment variables provided for a more advanced tunning of this EAR feature.

To get offline job data EAR provides eacct, a tool to provide the monitored job data stored in the Database. You can
request information in different ways, so you can read aggregated job data, per-node or per-loop information among
other things. See eacct usage examples for a better overview of which kind of data eacct provides.

There is another way to get runtime and aggregated data during runtime without the need of calling eacct after the
job completion. EAR implements a reporting system mechanism which let developers to add new report plug-ins,
so there is an infinit set of ways to report EAR collected data.

Therefore EAR releases come with a fully supported report plug-in (called csv_ts) which basically provides the same
runtime and aggregated data reported to the Database in CSV files, directly while the job is running. You can load
this plug-in in two ways:

1. By setting --ear-user-db flag at submission time.

2. Loading directly the report plug-in through an environment variable: export SLURM_EAR_REPORT_ <
ADD=csv_ts.so.

Contact with ear—-support@bsc.es for more information about report plug-ins.

You can also request EAR to report events to the Database. They show more details about EARL internal state and
can be provided with eacct command. See how to enable EAR events reporting and which kind of events EAR is
reporting.

If your application applies, you can request EAR to report at the end of the execution a summary about its MPI behaviour.
The information is provided along two files and is the aggregated data of each process of the application.

Finally, EARL can provide runtime data in the Paraver trace format. Paraver is a flexible performance analysis
tool maintained by the Barcelona Supercomputing Center's tools team. This tool provides an easy
way to visualize runtime data, computing derived metrics and to provide histograms for better of your application
behaviour. See on the environment variables page how to generate Paraver traces.

Contact with ear-support@bsc.es if you want to get more details about how to deal with EAR
data with Paraver.

2.3 EAR job submission flags

The following EAR options can be specified when running srun and/or sbatch, and are supported with
srun/sbatch/salloc:

Option Description

--ear=[on|off] Enables/disables EAR library loading with this job.

--ear-user-db=<filename> | Asks the EAR Library to generate a set of CSV files with EARL metrics.
Generated by Doxygen

--ear-verbose=[0|1] Specifies the level of verbosity; the default is 0.

mailto:ear-support@bsc.es
https://tools.bsc.es/paraver
https://bsc.es/
mailto:ear-support@bsc.es

2.3 EAR job submission flags 7

When using ——ear-user-db flag, one file per node is generated with the average node metrics (node signature)
and one file with multiple lines per node is generated with runtime collected metrics (loops node signatures). Read
eacct's section in the commands page to know which metrics are reported, as data generated by this flag is the
same as the reported (and retrieved later by the command) to the Database.

Verbose messages are placed by default in stderr. For jobs with multiple nodes, ear—verbose option can result
in lots of messages mixed at stderr. We recommend to split up SLURM's output (or error) file per-node. You can
read SLURM's filename pattern specification for more information.

If you still need to have job output and EAR output separated, you can set SLURM_EARL_VERBOSE_PATH en-
vironment variable and one file per node will be generated only with EAR output. The environemnt variable must
be set with the path (a directory) where you want the output files to be generated, it will be automatically created if
needed.

You can always check the avaiable EAR submission flags provided by EAR's SLURM SPANK plug-in
by typing srun —-help.

2.3.1 CPU frequency selection

The EAR configuration file supports the specification of EAR authorized users, who can ask for a more privileged
submission options. The most relevant ones are the possibility to ask for a specific optimisation policy and a specific
CPU frequency.

Contact with sysadmin or helpdesk team to become an authorized user.

* The ——ear-policy=policy_name flag asks for policy name policy. Type srun —-help to see poli-
cies currently installed in your system.

* The ——ear-cpufreg=value (value must be given in kHz) asks for a specific CPU frequency.

2.3.2 GPU frequency selection

EAR version 3.4 and upwards supports GPU monitoring for NVIDIA devices from the point of view of the appli-
cation and node monitoring. GPU frequency optimization is not yet supported. Authorized users can ask for a
specific GPU frequency by setting the SLURM_EAR_GPU_DEF_FREQ environment variable, giving the desired
GPU frequency expressed in kHz. Only one frequency for all GPUs is now supported.

Contact with sysadmin or helpdesk team to become an authorized user.

To see the list of available frequencies of the GPU you will work on, you can type the following command:
nvidia-smi -g -d SUPPORTED_CLOCKS

Generated by Doxygen

https://slurm.schedmd.com/sbatch.html#lbAH

8 User guide

2.4 Examples

2.4.1 srun examples

Having an MPI application asking for one node and 24 tasks, the following is a simple case of job submission. If
EARL is turned on by default, no extra options are needed to load it. To check if it is on by default, load the EAR

module and execute the ear—info command. EAR verbose is set to 0 by default, i.e., no EAR messages.
srun -J test -N 1 -n 24 --tasks-per-node=24 application

The following executes the application showing EAR messages, including EAR configuration and node signature in
stderr.

srun --ear-verbose=1 -J test -N 1 -n 24 --tasks-per—-node=24 application

EARL verbose messages are generated in the standard error. For jobs using more than 2 or 3 nodes messages
can be overwritten. If the user wants to have EARL messages in a file the SLURM_EARIL_VERBOSE_PATH

environment variable must be set with a folder name. One file per node will be generated with EARL messages.
export SLURM_EARL_VERBOSE_PATH=logs
srun --ear-verbose=1 -J test -N 1 -n 24 --tasks-per-node=24 application

The following asks for EARL metrics to be stored in csv file after the application execution. Two files per node will
be generated: one with the average/global signature and another with loop signatures. The format of output files
is <filename>.<nodename>.time.csv for the global signature and <filename>.<nodename>>.time.loops.csv for
loop signatures.

srun -J test -N 1 -n 24 --tasks-per-node=24 --ear-user-db=filename application

For EAR authorized users, the following executes the application with a CPU frequency of 2.0GHz:
srun -—ear-cpufreq=2000000 --ear-policy=monitoring —--ear-verbose=1 -J test -N 1 -n 24 —--tasks-per-node=24
application

For ——ear—-cpufreq to have any effect, you must specify the ——ear—-policy option even if you want to run
your application with the default policy.

2.4.2 sbatch + EARL + srun

When using sbatch EAR options can be specified in the same way. If more than one srun is included in the job
submission, EAR options can be inherited from sbat ch to the different srun instances or they can be specifically
modified on each individual srun.

The following example will execute twice the application. Both instances will have the verbosity set to 1. As the job
is asking for 10 nodes, we have set the SLURM_EARL_VERBOSE_PATH environment variable set to the ear_log
folder. Moreover, the second step will create a set of csv files placed in the ear_metrics folder. The nodename, Job

Id and Step Id are part of the filename for a better identification.
#!/bin/bash

#SBATCH -N 1

#SBATCH -e test.%j.err

#SBATCH -o test.%j.out

#SBTACH --ntasks=24

#SBATCH --tasks-per-node=24

#SBATCH --cpus-per-task=1

#SBATCH --ear-verbose=1

export SLURM_EARL_VERBOSE_PATH=ear_logs
srun application

mkdir ear_metrics
srun —-ear-user—-db=ear_metrics/app_metrics application

Generated by Doxygen

2.5 EAR job Accounting (eacct) 9

2.4.3 EARL + mpirun
2.4.3.1 Intel MPI

When running EAR with mp i run rather than srun, we have to specify the utilization of srun as bootstrap. Version

2019 and newer offers two environment variables for bootstrap server specification and arguments.
export I_MPI_HYDRA_ BOOTSTRAP=slurm

export I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS="--ear-policy=monitoring --ear-verbose=1"
mpiexec.hydra -n 10 application

2.4.3.2 OpenMPI

Bootstrap is an Intel(R) MPI option but not an OpenMPI option. For OpenMPI| srun must be used for an automatic
EAR support. In case OpenMPI with mpirun is needed, EAR offers the erun command, which is a program that
simulates all the SLURM and EAR SLURM Plug-in pipeline. You can launch erun with the ——program option to
specify the application name and arguments.

mpirun -n 4 /path/to/erun --program="hostname --alias"

In this example, mpirun would run 4 erun processes. Then, erun will launch the application hostname with its
alias parameter. You can use as many parameters as you want but the semicolons have to cover all of them in case
there are more than just the program name.

erun will simulate on the remote node both the local and remote pipelines for all created processes. It has an
internal system to avoid repeating functions that are executed just one time per job or node, like SLURM does with
its plugins.

IMPORTANT NOTE If you are going to launch n applications with erun command through a sbatch job, you must
set the environment variable SLURM_STEP_ID to values from 0 to n—1 before each mpirun call. By this way
erun will inform the EARD the correct step ID to be stored then to the Database.

2.5 EAR job Accounting (eacct)

The eacct command shows accounting information stored in the EAR DB for jobs (and steps) IDs. The command
uses EAR's configuration file to determine if the user running it is privileged or not, as non-privileged users can
only access their information. It provides the following options.

2.5.1 Usage examples

The basic usage of eacct retrieves the last 20 applications (by default) of the user executing it. If a user is
privileged, they may see all users applications. The default behaviour shows data from each job-step, aggregating
the values from each node in said job-step. If using SLURM as a job manager, a sb (sbatch) job-step is created with

the data from the entire execution. A specific job may be specified with -3 option.
[user@host EAR]$ eacct -3J 175966

JOB-STEP USER APPLICATION POLICY NODES AVG/DEF/IMC (GHz) TIME (s) POWER (W) GBS CPI
ENERGY (J) GFLOPS/W IO (MBs) MPI% G-POW (T/U) G-FREQ G-UTIL(G/MEM)
175966-sb user afid NP 2 2.97/3.00/--- 3660.00 381.51 - -
2792619 == == - ——= == -
175966-2 user afid MO 2 2.97/3.00/2.39 1205.26 413.02 146.21 1.04
995590 0.1164 0.0 21.0 --—- - -
175966-1 user afid MT 2 2.62/2.60/2.37 1234.41 369.90 142.63 1.02
913221 0.1265 0.0 19.7 —— - -
175966-0 user afid ME 2 2.71/3.00/2.19 1203.33 364.60 146.23 1.07
877479 0.1310 0.0 17.9 -——- == -

The command shows a pre-selected set of columns, read eacct's section on the EAR commands page.

Generated by Doxygen

10 User guide

For node-specific information, the —1 (i.e., long) option provides detailed accounting of each individual node«
: In addition, eacct shows an additional column: VPI (%) (See the example below). The VPI is meaning the

percentage of AVX512 instructions over the total number of instructions.
[user@host EAR]$ eacct -j 175966 -1

JOB-STEP NODE ID USER ID APPLICATION AVG-F/IMC-F TIME (s) POWER (s) GBS CPI
ENERGY (J) IO (MBS) MPIS% VPI(%) G-POW (T/U) G-FREQ G-UTIL(G/M)
175966-sb cmp2506 user afid 2.97/--- 3660.00 388.79 —-——= -
1422970 - - - - - -
175966-sb cmp2507 user afid 2.97/--- 3660.00 374.22 — -
1369649 - - - - - -
175966-2 cmp2506 user afid 2.97/2.39 1205.27 423.81 146.06 1.03
510807 0.0 21.2 0.23 - - -
175966-2 cmp2507 user afid 2.97/2.39 1205.26 402.22 146.35 1.05
484783 0.0 20.7 0.01 - - -
175966-1 cmp2506 user afid 2.58/2.38 1234.46 374.14 142.51 1.02
461859 0.0 19.4 0.00 - - -
175966-1 cmp2507 user afid 2.67/2.37 1234.35 365.67 142.75 1.03
451362 0.0 20.0 0.01 - - -
175966-0 cmp2506 user afid 2.71/2.19 1203.32 371.76 146.25 1.08
447351 0.0 17.9 0.01 - - -
175966-0 cmp2507 user afid 2.71/2.19 1203.35 357.44 146.21 1.05
430128 0.0 17.9 0.01 ——= - -

If EARL was loaded during an application execution, runtime data (i.e., EAR loops) may be retrieved by using —r
flag. You can still filter the output by Job (and Step) ID.

Finally, to easily transfer eacct’s output, —c option saves the requested data in CSV format. Both aggregated and
detailed accountings are available, as well as filtering. When using along with —1 or —r options, all metrics stored

in the EAR Database are given. Please, read the commands section page to see which of them are available.
[user@host EAR]S$ eacct -3j 175966.1 -r

JOB-STEP NODE ID ITER. POWER (W) GBS cPI GFLOPS/W TIME (s) AVG_F IMC_F IO(MBS) MPI%
G-POWER(T/U) G-FREQ G-UTIL (G/MEM)
175966-1 cmp2506 21 360.6 115.8 0.838 0.086 1.001 2.58 2.30 0.0 11.6
0.0 / 0.0 0.00 0%/0%
175966-1 cmp2507 21 333.7 118.4 0.849 0.081 1.001 2.58 2.32 0.0 12.0
0.0 / 0.0 0.00 0%/0%
175966-1 cmp2506 31 388.6 142.3 1.010 0.121 1.113 2.58 2.38 0.0 19.7
0.0 / 0.0 0.00 0%/0%
175966-1 cmp2507 31 362.8 142.8 1.035 0.130 1.113 2.59 2.37 0.0 19.5
0.0 / 0.0 0.00 0%/0%
175966-1 cmp2506 41 383.3 143.2 1.034 0.124 1.114 2.58 2.38 0.0 19.6
0.0 / 0.0 0.00 0%/0%

[user@host EAR]$ eacct -j 175966 -c test.csv
Successfully written applications to csv. Only applications with EARL will have its information properly
written.

[user@host EAR]$ eacct -3j 175966.1 -c -1 test.csv
Successfully written applications to csv. Only applications with EARL will have its information properly
written.

2.6 Job energy optimization: EARL policies

The core component of EAR at the user's job level is the EAR Library (EARL). The Library deals with job monitoring
and is the component which implements and applies optimization policies based on monitored workload.

We highly recommend you to read EARL documentation and also how energy policies work in order to better
understand what is doing the Library internally, so you will can explore easily all features (e.g., tunning variables,
collecting data) EAR offers to the end-user so you will have more knowledge about how much resources your
application consumes and how to correlate with its computational characteristics.

Generated by Doxygen

Chapter 3

EAR commands

EAR offers the following commands:

« Commands to analyze data stored in the DB: eacct and ereport.

+ Commands to control and temporally modify cluster settings: econtrol.

« Commands to create/update/clean the DB: edb_create, edb_clean_pm and edb_clean_apps.

» A command to run OpenMPI applications with EAR on SLURM systems through mpirun command: erun.

« A command to show current EAR installation information: ear-info.

Commands belonging to the first three categories read the EAR configurarion file (ear.conf) to determine
whether the user is authorized, as some of them has some features (or the wall command) only available that
set of users. Root is a special case, it doesn't need to be included in the list of authorized users. Some options are
disabled when the user is not authorized.

NOTE EAR module must be loaded in your environment in order to use EAR commands.

3.1 EAR job Accounting (eacct)

The eacct command shows accounting information stored in the EAR DB for jobs (and step) IDs. The command
uses EAR's configuration file to determine if the user running it is privileged or not, as non-privileged users can
only access their information. It provides the following options.

Usage: eacct [Optional parameters]
Optional parameters:
-h displays this message
-v displays current EAR version
-b verbose mode for debugging purposes
-u specifies the user whose applications will be retrieved. Only available to privileged users.
[default: all users]
-j specifies the job id and step id to retrieve with the format [jobid.stepid] or the format
[jobidl, jobid2, ..., jobid_n].
A user can only retrieve its own jobs unless said user is privileged. [default: all jobs]
—-a specifies the application names that will be retrieved. [default: all app_ids]
—-c specifies the file where the output will be stored in CSV format. If the argument is "no_file"
the output will be printed to STDOUT [default: off]
-t specifies the energy_tag of the jobs that will be retrieved. [default: all tags].
-s specifies the minimum start time of the Jjobs that will be retrieved in YYYY-MM-DD. [default: no
filter].
—e specifies the maximum end time of the jobs that will be retrieved in YYYY-MM-DD. [default: no
filter].
-1 shows the information for each node for each job instead of the global statistics for said Jjob.

Generated by Doxygen

12

EAR commands

-x shows the last EAR events. Nodes, job ids, and step ids can be specified as if were showing job

information.

-m prints power signatures regardless of whether mpi signatures are available or not.
-r shows the EAR loop signatures. Nodes, job ids, and step ids can be specified as if were showing

job information.

-0 modifies the -r option to also show the corresponding jobs. Should be used with -3j.

-n specifies the number of jobs to be shown, starting from the most recent one.

[default: 20] [to

get all jobs use -n all]

—-f specifies the file where the user-database can be found.

If this option is used, the information

will be read from the file and not the database.

The basic usage of eacct retrieves the last 20 applications (by default) of the user executing it.

If a user is

privileged, they may see all users applications. The default behaviour shows data from each job-step, aggregating
the values from each node in said job-step. If using SLURM as a job manager, a sb (sbatch) job-step is created with
the data from the entire execution. A specific job may be specified with - option.

Below table shows some examples of eacct usage.

Command line

Description

eacct

Shows last 20 jobs executed by the user.

eacct -j <JobID>

Shows data of the job <JoblD>, one row for each step of the job.

eacct -j <JobID>.<SteplD>

Shows data of the step <SteplD> of job <JobID>.

eacct -j <JoblDx>,<JoblDy>,<JoblDz>

Shows data of jobs (one row per step) <JoblDx>,<JoblDy> and
<JobIDz>.

The command shows a pre-selected set of columns:

Column field Description

JOB-STEP JoblID and SteplD reported. JoblID-xsbx is shown for the sbatch step in SLURM systems.

USER The username of the user who executed the job.

APPLICATION Job’s name or executable name if job name is not provided.

POLICY Energy optimization policy name. MO means for monitoring, ME for min_energy, MT for
min_time and NP is the job ran without EARL.

NODES Number of nodes involved in the job run.

AVG/DEF/IMC(GHz) | Average CPU frequency, default frequency and average uncore frequency. Includes all
the nodes for the step. In GHz.

TIME(s) Average step execution time along all nodes, in seconds.

POWER(W) Average node power along all the nodes, in Watts.

GBS CPU main memory bandwidth (GB/second). Hint for CPU/Memory bound classification.

CPI CPU Cycles per Instruction. Hint for CPU/Memory bound classification.

ENERGY(J) Accumulated node energy. Includes all the nodes. In Joules.

GFLOPS/W CPU GFlops per Watt. Hint for energy efficiency. The metric uses the number of opera-
tions, not instructions.

IO(MBS) I/O (read and write) Mega Bytes per second.

MPI1% Percentage of MPI time over the total execution time. It's the average including all the

processes and nodes.

If EAR supports GPU monitoring/optimisation, the following columns are added:

Column field Description
G-POW (T/U) Average GPU power. Accumulated per node and average along involved nodes. T mean for
total GPU power consumed (even the job is not using any or all of GPUs in one node). U
means for only used GPUs on each node.
G-FREQ Average GPU frequency. Per node and average of all the nodes.
G-UTIL(G/MEM) | GPU utilization and GPU memory utilization.

Generated by Doxygen

3.1 EAR job Accounting (eacct) 13

For node-specific information, the —1 (i.e., long) option provides detailed accounting of each individual node. In
addition, eacct shows an additional column: VPI (%) . The VPl is meaning the percentage of AVX512 instructions
over the total number of instructions.

For runtime data (EAR loops) one may retrieve them with —r. Both Job and Step ID filtering works. To easily transfer
command's output, —c option saves it in .csv format. Both aggregated and detailed accountings are available, as
well as filtering:

Command line
eacct -j <JobID> -c test.csv

Description

Adds to the file test . csv all metrics shown above for each step
if the job <JobID>.

Appends to the file test . csv all metrics in the EAR DB for each
node involved in step <SteplD> of job <JoblD>.

Appends to the file test . csv all metrics in EAR DB for each loop
of each node involved in step <SteplD> of job <JobID>.

eacct -j <JoblD>.<SteplD> -I -c test.csv

eacct -j <JoblD>.<StepID> -r -c test.csv

When requesting long format (i.e., —1 option) or runtime metrics (i.e., —r option) to be stored in a CSV file (i.e.,
—c option), header names change from the output shown when you don't request CSV format. Below table shows
header names of CSV file storing long information about jobs:

Field name Description
NODENAME The node name the row information belongs to.
JOBID The JoblD.
STEPID The SteplD. For the sbatch step, SLURM_BATCH_SCRIPT value is printed.
USERID The username of the user who executed the job.
GROUPID The group name of the user who executed the job.
JOBNAME Job’s name or executable name if job name is not provided.
USER_ACC The account name of the user who executed the job.
ENERGY_TAG The energy tag used if the user set one for its job step.
POLICY Energy optimization policy name. MO means for monitoring, ME for min_energy, MT
for min_time and NP is the job ran without EARL.
POLICY_TH The policy threshold used by the optimization policy set with the job.

AVG_CPUFREQ_KHZ

Average CPU frequency of the job step executed in the node, expressed in kHz.

AVG_IMCFREQ_KHZ

Average uncore frequency of the job step executed in the node, expressed in kHz.
Default data fabric frequency on AMD sockets.

DEF_FREQ_KHZ

default frequency of the job step executed in the node, expressed in kHz.

TIME_SEC Execution time (in seconds) of the application in the node. As this is computed by
EARL, sbatch step does not contain such info.

CPI CPU Cycles per Instruction. Hint for CPU/Memory bound classification.

TPI Memory transactions per Instruction. Hint for CPU/Memory bound classification.

MEM_GBS CPU main memory bandwidth (GB/second). Hint for CPU/Memory bound classifica-
tion.

I0_MBS I/O (read and write) Mega Bytes per second.

PERC_MPI Percentage of MPI time over the total execution time.

DC_NODE_POWER«+
W

Average node power, in Watts.

DRAM_POWER_W

Average DRAM power, in Watts. Not available on AMD sockets.

PCK_POWER_W

Average RAPL package power, in Watts.

CYCLES Total number of cycles.
INSTRUCTIONS Total number of instructions.
CPU-GFLOPS CPU GFlops per Watt. Hint for energy efficiency. The metric uses the number of

operations, not instructions.

Generated by Doxygen

14

EAR commands

Field name Description
L1_MISSES Total number of L1 cache misses.
L2_MISSES Total number of L2 cache misses.
L3 MISSES Total number of L3/LLC cache misses.
SPOPS_SINGLE Total number of single precision 64 bit floating point operations.
SPOPS_128 Total number of single precision 128 bit floating point operations.
SPOPS_256 Total number of single precision 256 bit floating point operations.
SPOPS_512 Total number of single precision 512 bit floating point operations.
DPOPS_SINGLE Total number of double precision 64 bit floating point operations.
DPOPS_128 Total number of double precision 128 bit floating point operations.
DPOPS_256 Total number of double precision 256 bit floating point operations.
DPOPS_512 Total number of double precision 512 floating point 512 operations.

If EAR supports GPU monitoring/optimisation, the following columns are added:

Field name Description

GPUxxx_POWER_W Average GPUxxx power, in Watts.

GPUsxxx_FREQ_KHZ Average GPUxxx frequency, in kHz.

GPUxx+_MEM_FREQ_KHZ | Average GPuxxx memory frequency, in kHz.

GPUxxx_UTIL_PERC Average percentage of GPUsxxx utilization.

GPUsxx+_MEM_UTIL_PERC

Average percentage of GPUxx*x memory utilization.

For runtime metrics (i.e., —r option), USERID, GROUPID, JOBNAME, USER_ACC, ENERGY _TAG (as energy tags
disable EARL), POLICY and POLICY_TH are not stored at the CSV file. However, the iteration time (in seconds)
is present on each loop as ITER_TIME_SEC, as well as a timestamp (i.e., TIMESTAMP) with the elapsed time in

seconds since the EPOCH.

3.2 EAR system energy Report (ereport)

The ereport command creates reports from the energy accounting data from nodes stored in the EAR DB. It is
intended to use for energy consumption analysis over a set period of time, with some additional (optional) criteria

such as node name or username.
Usage: ereport [options]
Options are as follows:
—-s start_time
computed. Format:
—-e end_time
computed. Format: YYYY-MM-DD. Default:
-n node_name |all
nodes computed)

YYYY-MM-DD. Default: end_time minus insertion timex2.

current time.

rall’
-u user_name |all

Default: none (all users computed).

indicates from which node the energy will be computed. Default:

indicates the start of the period from which the energy consumed will be

indicates the end of the period from which the energy consumed will be

none (all

option shows all users individually, not aggregated.
requests the energy consumed by a user in the selected period of time.

"all’” option shows all users individually, not aggregated.

-t energy_taglall
Default: none (all tags computed).

’all’

—-i eardbd_namel|all indicates from which eardbd

none (all islands computed)

(island)

rall’
the contents of EAR’s database Global_energy table.
the two previous T2 periods of EARGM.

This option can only be modified with -s, not -e
the daemon events from -s to -e.

-g shows
option will show the records for

-x shows
shows the last 20 events.

-V

-h

current EAR version.
this message.

shows
shows

requests the energy consumed by energy tag in the selected period of time.

option shows all tags individually, not aggregated.
the energy will be computed. Default:

option shows all eardbds individually, not aggregated.
The default

If no time frame is specified, it

Generated by Doxygen

3.2 EAR system energy Report (ereport) 15

3.2.1 Examples

The following example uses the 'all' nodes option to display information for each node, as well as a start_time so it

will give the accumulated energy from that moment until the current time.
[user@host EAR]$ ereport -n all -s 2018-09-18

Energy (J) Node Avg. Power (W)
20668697 nodel 146
20305667 node2 144
20435720 node3 145
20050422 node4 142
20384664 node5 144
20432626 node6 145
18029624 node? 128

This example filters by EARDBD host (one per island typically) instead:

[user@host EAR]$ ereport -s 2019-05-19 -i all

Energy (J) Node
9356791387 islandl
30475201705 island2
37814151095 island3
28573716711 island4
29700149501 island5
26342209716 islandé

And to see the state of the cluster's energy budget (set by the sysadmin) you can use the following:
[user@host EAR]$ ereport -g

Energy% Warning 1lvl Timestamp INC th p_state ENERGY T1 ENERGY T2 TIME T1
TIME T2 LIMIT POLICY

111.486 100 2019-05-22 10:31:34 0 100 893 1011400 907200
600 604800 EnergyBudget

111.492 100 2019-05-22 10:21:34 0 100 859 1011456 907200
600 604800 EnergyBudget

111.501 100 2019-05-22 10:11:34 0 100 862 1011533 907200
600 604800 EnergyBudget

111.514 100 2019-05-22 10:01:34 0 100 842 1011658 907200
600 604800 EnergyBudget

111.532 100 2019-05-22 09:51:34 0 100 828 1011817 907200
600 604800 EnergyBudget

111.554 0 2019-05-22 09:41:34 0 0 837 1012019 907200
600 604800 EnergyBudget

3.2.2 EAR Control (econtrol)

The econtrol command modifies cluster settings (temporally) related to power policy settings. These options
are sent to all the nodes in the cluster.

NOTE Any changes done with econtrol will not be reflected in ear.conf and thus will be lost
when reloading the system.

Usage: econtrol [options]
—-—-status —->requests the current status for all nodes. The ones
responding show the current
power, IP address and policy configuration. A list
with the ones not
responding is provided with their hostnames and IP

address.
-—-status=node_name retrieves the status of that node
individually.
—-—type [status_type] ->specifies what type of status will be requested: hardware,

policy, full (hardware+policy), app_node,
app_master, eardbd, eargm or power. [default:hardware]
——-power ->requests the current power for the cluster.
—-power=node_name retrieves the current power of
that node individually.

—--set-freq [newfreq] —->sets the frequency of all nodes to the requested one
—--set-def-freq [newfreq] [pol_name] ->sets the default frequency for the selected policy
—-—set-max-freq [newfreq] ->sets the maximum frequency

——set-powercap [new_cap] ->sets the powercap of all nodes to the given value. A node

can be specified
after the value to only target said node.
—--hosts [hostlist] ->sends the command only to the specified hosts. Only works
with status, power_status,
—-power and —--set-powercap
—--restore-conf —->restores the configuration for all nodes

Generated by Doxygen

16 EAR commands

——active-only —->supresses inactive nodes from the output in hardware
status.

——health-check ->checks all EARDs and EARDBDs for errors and prints all
that are unresponsive.

--mail [address] —->sends the output of the program to address.

--ping ->pings all nodes to check whether the nodes are up or not.
Additionally,

—--ping=node_name pings that node individually.
—--version ->displays current EAR version.
—-help ->displays this message.

econtrol's status is a useful tool to monitor the nodes in a cluster. The most basic usage is the hardware status
(default type) which shows basic information of all the nodes.

[user@login]$ econtrol --status

hostname power temp freq job_id stepid
node2 278 66C 2.59 6878 0
node3 274 57C 2.59 6878 0
node4 52 31C 1.69 0 0

INACTIVE NODES
nodel 192.0.0.1

The application status type can be used to retrieve all currently running jobs in the cluster. app_master gives a
summary of all the running applications while app_node gives detailed information of each node currently running

a job.

[user@login]$ econtrol --status --type=app_master

Job-Step Nodes DC power CPI GBS Gflops Time Avg Freg
6878-0 2 280.13 0.37 24.39 137.57 54.00 2.59

[user@login]$ econtrol --status --type=app_node

Node id Job-Step M-Rank DC power CPI GBS Gflops Time Avg Freq
node2 6878-0 0 280.13 0.37 24.39 137.57 56.00 2.59
node3 6878-0 1 245.44 0.37 24.29 136.40 56.00 2.59

3.3 Database commands

3.3.1 edb_create

Creates the EAR DB used for accounting and for the global energy control. Requires root access to the MySQL
server. It reads the ear . conf to get connection details (server IP and port), DB name (which may or may not have
been previously created) and EAR's default users (which will be created or altered to have the necessary privileges
on EAR's database).

Usage:edb_create [options]

-p Specify the password for MySQL’s root user.

e Outputs the commands that would run.

-r Runs the program. If ’'-o’ this option will be override.
-h Shows this message.

3.3.2 edb_clean_pm

Cleans periodic metrics from the database. Used to reduce the size of EAR's database, it will remove every
Periodic_metrics entry older than num_days:

Usage:./src/commands/edb_clean_pm [options]

—d num_days REQUIRED: Specify how many days will be kept in database. (defaut: 0 days).
-p Specify the password for MySQL’s root user.

-0 Print the query instead of running it (default: off).

-r Execute the query (default: on).

-h Display this message.

-v Show current EAR version.

Generated by Doxygen

3.4 erun 17

3.3.3 edb_clean_apps

Removes applications from the database. It is intended to remove old applications to speed up queries and free up
space. It can also be used to remove specific applications from database. It removes ALL the information related
to those jobs (the following tables will be modified for each job: Loops, if they exist; GPU_signatures, if they exist;
Signatures, if they exist; Power signatures, Applications, and Jobs).

It is recommended to run the application with the -o option first to ensure that the queries that will be executed are

correct.
Usage:edb_clean_apps [-j/-d] [options]
-p The program will request the database user’s password.
—-u user Database user to execute the operation (it needs DELETE privileges). [default: root]

-j jobid.stepid Job id and step id to delete. If no step_id is introduced, every step within the job
will be deleted

—-d ndays Days to preserve. It will delete any jobs older than ndays.
-0 Prints out the queries that would be executed. Exclusive with -r. [default:on]
-r Runs the queries that would be executed. Exclusive with -o. [default:off
-1 Deletes Loops and its Signatures. [default:off]
-a Deletes Applications and related tables. [default:off]
-h Displays this message
3.4 erun

erun is a program that simulates all the SLURM and EAR SLURM Plug-in pipeline. It was designed to pro-
vide compatibility between MPI implementations not fully compatible with SLURM SPANK plug-in mechanism (e.g.,
OpenMPI), which is used to set up EAR at job submission. You can launch erun with the ——program option to
specify the application name and arguments. See the usage below:

> erun --help

This is the list of ERUN parameters:
Usage: ./erun [OPTIONS]

Options:
—-Jjob-id=<arg> Set the JOB_ID.
——nodes=<arg> Sets the number of nodes.
—--program=<arg> Sets the program to run.
--clean Removes the internal files.

SLURM options:

The syntax to run an MPI application with erun has the form ‘mpirun -n <X> erun --program='my_app arg1 arg2

argN’. Therefore, mpirunwill run *X%x erun processes. Then,erunwill launch the
applicationmy_app’ with the arguments passed, if specified. You can use as many parameters as you want
but the semicolons have to cover all of them in case there are more than just the program name.

erun will simulate on the remote node both the local and remote pipelines for all created processes. It has an
internal system to avoid repeating functions that are executed just one time per job or node, like SLURM does with
its plugins.

IMPORTANT NOTE If you are going to launch n applications with erun command through a sbatch job, you must
set the environment variable SLURM_STEP_ ID to values from 0 to n—1 before each mpirun call. By this way
erun will inform the EARD the correct step ID to be stored then to the Database.

The -—job-id and ——nodes parameters create the environment variables that SLURM would have created
automatically, because it is possible that your application make use of them. The ——clean option removes the
temporal files created to synchronize all ERUN processes.

Also you have to load the EAR environment module or define its environment variables in your environment or
script:

Variable Parameter
EAR_INSTALL_PATH=<path> | prefix=<path>
EAR—TMP=<path localstatedir=<path
Generated by Doxygen — -
EAR_ETC=<path> sysconfdir=<path>

EAR_DEFAULT=<on/off> default=<on/off>

18 EAR commands

3.5 ear-info

ear-info is a tool created to quickly view useful information about the current EAR installation of the system. It
shows relevant details for both users and administrators, such as configuration defaults, installation paths, etc.

[user@hostname ~]$ ear-info -h

Usage: ear-info [options]
——-node-conf [=nodename]
—--help

The tool prints out information without giving it any argument. It shows a resume about EAR parameters set at
compile time, as well as some installation dependent configuration:

» The current EAR version.
* The maximum number of CPUs/processors supported.
» The maximum number of sockets supported.
» Whether the current installation provides support for GPUs.
» The default optimization policy.
» Whether the EAR Library is enabled by default on job submission.
« Information about EAR's Uncore Frequency Scaling policy (eUFS) configuration.
* EAR's dynamic load balancing policy.
» EAR's application phase classification.
» EAR's MPI stats collection feature.
+ EAR data reporting mechanism configuration.
Below there is an example of the output:
EAR version 4.3
Max CPUS supported set to 256
Max sockets supported set to 4
EAR installed with GPU support MAX_GPUS 8

Default cluster policy is monitoring
EAR optimization by default set to O

Environment configuration section..............
eUFS

eUFS limit 0.02
Load balanced enabled
Load Balance th 0.80

1
0
1
0
Use turbo for critical path 1
Use turbo 0
Exclusive mode 0
Use EARL phases 1
Use energy models 1
Max IMC frequency (0 = not defined) 0
Min IMC frequency (0 = not defined) 0
GPU frequency/pstate (0 = max GPU freq) O
MPI optimization 0
MPI statistics 0
App. Tracer no trace

App. Extra report plugins no extra plugins

App. reporting loops to EARD 1

Install path /hpc/base/ctt/packages/EAR/ear
Energy optimization policy
GPU power policy
/hpc/base/ctt/packages/EAR/ear/lib/plugins/policies/gpu_monitoring.so
CPU power model
/hpc/base/ctt/packages/EAR/ear/lib/plugins/policies/gpu_monitoring.so
CPU shared power model
/hpc/base/ctt/packages/EAR/ear/lib/plugins/models/cpu_power_model_default.so

Generated by Doxygen

3.5 ear-info 19

EAR was designed to be installed on heterogeneous systems, so there are some configuration parameters that are
applied to a set of nodes identified by different tags. The ——node-conf flag can be used to request additional
information about a specific node. Configuration related to EAR's power capping sub-system, default optimization
policies configuration and other parameters associated with the node requested are retrieved. You can read the
EAR configuration section for more details about how EAR uses tags to identify and configure different kind of
nodes on a given heterogeneous system.

Contact with ear—-support@bsc.es for more information about the nomenclature used by ear—info's out-
put.

Generated by Doxygen

mailto:ear-support@bsc.es

20

EAR commands

Generated by Doxygen

Chapter 4

Environment variables

EAR offers some environment variables in order to provide users the opportunity to tune or request some of EAR
features. They must be exported before the job submission, e.g., in the batch script.

The current EAR version has support for SLURM, PBS and OAR batch schedulers. In SLURM systems the
scheduler may filter environment variables not prefixed with SLURM_ character set (this happens when the batch
script is submitted purging all environment variables to work in a clean environment). For that reason, the first
design of EAR environment variables was to have variable names with the form SLURM_<variable_name>.

Now that EAR has support for other batch schedulers, and in order to maintain the coherency of environment
variables names, below environment variables need the prefix of the scheduler used on the system the job is
submitted on, plus an underscore. For example, in SLURM systems, the environment variable presented as EAR_ «
LOADER_APPLICATION mustbe exported as SLURM_EAR_LOADER_APPLICATION inthe submission batch
script. In an OAR installed system, this variable would be exported as OAR_EAR_LOADER_APPLICATION. This
design may only have a real effect on SLURM systems, but it makes it easier for the development team to provide
support for multiple batch schedulers.

All examples showing the usage of below environment variables assume a system using SLURM.

4.1 Loading EAR Library

4.1.1 EAR_LOADER_APPLICATION

Rules the EAR Loader to load the EAR Library for a specific application that does not follow any of the current
programming models (or maybe a sequential app) supported by EAR. Your system must have installed the non-MPI
version of the Library (ask your system administrator).

The value of the environment variable must coincide with the job name of the application you want to launch with

EAR. If you don’t provide it, the EAR Loader will compare it against the executable name. For example:
#!/bin/bash

export SLURM_EAR_LOADER_APPLICATION=my_Jjob_name

srun --ntasks 1 --job-name=my_job_name ./my_exec_file

See the Use cases section to read more information about how to run jobs with EAR.

Generated by Doxygen

https://slurm.schedmd.com/
https://www.altair.com/pbs-professional/
https://oar.imag.fr/start

22 Environment variables

4.1.2 EAR_LOAD_MPI_VERSION

Forces to load a specific MPI version of the EAR Library. This is needed, for example, when you want to load

the EAR Library for Python + MPI applications, where the Loader is not able to detect the MPI implementation the

application is going to use. Accepted values are either intel or open mpi. The following example runs Tensorflow 1

benchmarks for several convulational neural networks with EAR. It can be downloaded from Tensorflow benchmarks
repository.

#!/bin/bash

#SBATCH --job-name=TensorFlow
#SBATCH -N 8

#SBATCH --ntasks-per-node=4
#SBATCH --cpus-per-task=18

Specific modules here

...
export SLURM_EAR_LOAD_MPI_VERSION="open mpi"

srun --ear-policy=min_time \
python benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py \
. more application options

See the Use cases section to read more information about how to run jobs with EAR.

4.2 Report plug-ins

4.2.1 EAR_REPORT_ADD

Specify a report plug-in to be loaded. The value must be a shared object file, and it must be located at SEAR_ «
INSTALL_PATH/lib/plugins/report or at the path from where the job was launched. Alternatively, you
can provide the full path (absolute or relative) of the report plug-in.

#!/bin/bash

export SLURM_EAR_REPORT_ADD:my_report_plugin.so

srun -n 10 my_mpi_app

4.3 Verbosity

4.3.1 EARL_VERBOSE_PATH

Specify a path to create a file (one per node involved in a job) where to print messages from the EAR Library. This
is useful when you run a job in multiple nodes, as EAR verbose information for each of them can result in lots of
messages mixed at stderr (EAR messages default channel). Also, there are applications that print information in
both stdout and stderr, so maybe a user wants to have information separated.

If the path does not exist, EAR will create it. The format of generated files names is earl_log.<node_<«+
rank>.<local_rank>.<Jjob_step>.<Jjob_1id>, where the node rankis an integer set by EAR from 0
to n_nodes - 1 involved in the job, and it indicates to which node the information belongs to. The local rank is an
arbitrary rank set by EAR of a process in the node (from 0 to n_procceses_in_node - 1). It indicates which process
is printing messages to the files, and it will be always the first one indexed, i.e., 0. Finally, the job_step and job_id
are fields showing information about the job corresponding to the execution from where messages were generated.
#!/bin/bash

#SBATCH -j my_Jjob_name

#SBATCH -N 2

#SBATCH -n 96

export SLURM_EARL_VERBOSE_PATH=ear_logs_dir_name

export I_MPI_HYDRA_BOOTSTRAP=slurm

export I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS="--ear-verbose=1"

mpirun -np 96 -ppn 48 my_app

After the above job example completion, in the same directory where the application was submitted, there will be a
directory called ear_logs_dir_name with two files, i.e., one for each node, called ear!_logs.0.0.<job_step>.<job«
_id> and earl_logs.1.0.<job_step>.<job_id>, respectively.

Generated by Doxygen

https://github.com/tensorflow/benchmarks

4.4 Frequency management 23

4.4 Frequency management

4.41 EAR_GPU_DEF_FREQ

Set a GPU frequency (in kHz) to be fixed while your job is running. The same frequency is set for all GPUs used by
the job.
#!/bin/bash

#SBATCH -J gromacs-cuda

#SBATCH -N 1

export I_MPI_PIN=1

export I_MPI_PMI_LIBRARY=/usr/1ib64/libpmi2.so
input_path=/hpc/appl/biology/GROMACS/examples
input_file=ion_channel.tpr
GROMACS_INPUT=$input_path/$input_£file

export SLURM_EAR_GPU_DEF_FREQ=1440000

srun --cpu-bind=core --ear-policy=min_energy gmx_mpi mdrun \
—s $GROMACS_INPUT -noconfout -ntomp 1

4.4.2 EAR_JOB_EXCLUSIVE_MODE

Indicate whether the job will run in a node exclusively (non-zero value). EAR will reduce the CPU frequency of those

cores not used by the job. This feature explodes a very easy vector of power saving.
#!/bin/bash

#SBATCH -N 1

#SBATCH -n 64

#SBATCH —--cpus-per-task=2

#SBATCH --exclusive

export SLURM_EAR_JOB_EXCLUSIVE_MODE=1

srun -n 10 --ear=on ./mpi_mpi_app

4.4.3 Controlling Uncore/Infinity Fabric frequency

EARL offers the possibility to control the Integrated Memory Controller (IMC) for Intel(R) architectures and Infinity
Fabric (IF) for AMD architectures. On this page we will use the term uncore to refer both of them. Environment
variables related to uncore control covers policy specific settings or the chance for a user to fix it during an entire
job.

4.4.3.1 EAR_SET_IMCFREQ

Enables/disables EAR's [eUFS](publications) feature. Type ear—info to see whehter eUFS is enabled by default.
You can control eUFS' maximum permitted time penalty by exporting EAR_POLICY_IMC_TH, which is a float
indicating the threshold value that prevents the policy to reduce so much the uncore frequency, possible leading to

considerable performance penalty.

Below example enables eUFS with a penalty threshold of 3.5%:
#!/bin/bash

export SLURM_EAR_SET_IMCFREQ=1
export SLURM_EAR_POLICY_IMC_TH=0.035

srun [...] my_app

Generated by Doxygen

24 Environment variables

4.4.3.2 EAR_MAX_IMCFREQ and EAR_MIN_IMCFREQ

Set the maximum and minimum values (in kHz) at which uncore frequency should be. Two variables were designed
because Intel(R) architectures let to set a range of frequencies that limits its internal UFS mechanism. If you set
both variables with different values, the minimum one will be set.

Below example shows a job execution fixing the uncore frequency at 2.0GHz:
#!/bin/bash

export SLURM_EAR_MAX_IMCFREQ=2000000
export SLURM_EAR_MIN_IMCFREQ=2000000

srun [...] my_app

4.4.4 Load Balancing

By default, EAR policies try to set the best CPU (and uncore, if enabled) frequency according to node grain metrics.
This behaviour can be changed telling EAR to detect and deal with unbalanced workloads, i.e., there is no equity
between processes regarding their MPI/computational activity.

When EAR detects such behaviour, policies slightly modify its way of CPU frequency selection by setting a dif-
ferent frequency for each process' cores according how far it is from the critical path. Please, contact with
ear—-support@bsc.es if you want more details about how it works.

A correct CPU binding it's required to get the most benefit of this feature. Check the documentation of
you application programming model/vendor/flavour or yur system batch scheduler.

EAR_LOAD_BALANCE Enables/Disables EAR's Load Balance strategy in energy policies. Type ear—-info to
see whether this feature is enabled by default.

Load unbalance detection algorithm is based on POP-CokE's Load Balance Efficiency metric, which is computed
as the ratio between average useful computation time (across all processes) and maximum useful computation time
(also across all processes). By default (if EAR_LOAD_BALANCE is enabled), a node load balance efficiency below
0.8 will trigger EAR's Load Balancing algorithm. This threshold value can be modified by setting EAR_LOAD«
_BALANCE_TH environment variable. For example, if you want to be more permissive with the application load

balance and prevent per-process CPU frequency selection, you can increase the load balance threshold:
#!/bin/bash

export SLURM_EAR_LOAD_BALANCE=1
export SLURM_EAR_LOAD_BALANCE_TH=0.89

srun [...] my_app

4.4.5 Support for Intel(R) Speed Select Technology

Since version 4.2, EAR supports the interaction with Intel (R) Speed Select Technology
(Intel (R) SST) which lets the user to have more fine grained control over per-CPU Turbo frequency.
This feature opens a door to users for getting more control over the performance (also power consumption) across
CPUs running their applications and jobs. It is available on selected SKUs of Intel(R) Xeon(R) Scalable processors.
For more information about Intel(R) SST, below are listed useful links to official documentation:

* Intel(R) SST-CP

Generated by Doxygen

mailto:ear-support@bsc.es
mailto:ear-support@bsc.es
https://pop-coe.eu/node/69
https://www.intel.com/content/www/us/en/architecture-and-technology/speed-select-technology-article.html
https://www.intel.com/content/www/us/en/architecture-and-technology/speed-select-technology-article.html
https://networkbuilders.intel.com/solutionslibrary/intel-speed-select-technology-core-power-intel-sst-cp-overview-technology-guide

4.4 Frequency management 25

* Intel(R) SST-TF

* The Linux Kernel: Intel(R) Speed Select Technology User Guide

EAR offers two environment variables that let to specify a list of priorities (CLOS) in two different ways. The first one
will set a CLOS for each task involved in the job. On the other hand, the second offered variable will set a list of
priorities per CPU involved in the job. Values must be within the range of available CLOS that Intel(R) SST provides
you.

If some of the two supported environment variables are set, EAR will set-up all of its internals transparently if the
architecture supports it. Also, it will restore configuration on the job ending. If Intel(R) SST is not supported, no
effect will occur. If you enable EARL verbosity you will see the mapping of the CLOS set for each CPU in the node.
Note that a —1 value means that no change was done on the specific CPU.

4.4.5.1 EAR_PRIO_TASKS

A list that specifies the CLOS that CPUs assigned to tasks must be set. This variable is useful because you can
configure your application transparently without concerning about the affinity mask that the scheduler is assigning
to your tasks. You can use this variable when you know (or guess) your application's tasks workload and you want
to tune it by setting manually different Turbo priorities. Note that you still need to ensure that different tasks do not
share CPUs.

For example, imagine you want to submit a job that runs a MPI application with 16 tasks, each one pinned on a
single core, in a two-socket Intel(R) Xeon(R) Platinum 8352Y with 32 cores each, with Hyper-threading enabled,
i.e., each task will run on two CPUs and 32 of the total 128 will be allocated by this application. Below could be a
(simplified) batch script that submits this example:

#!/bin/bash

export SLURM_EAR_PRIO_TASKS=0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3

srun --ntasks=16 —--cpu-bind=core,verbose --ear-policy=monitoring --ear-cpufreq=2201000 --ear-verbose=1
bin/bt.C.x

The above script sets CLOS 0 to tasks 0 to 3, CLOS 1 to tasks 4 to 7, CLOS 2 to tasks 8 to 11 and CLOS 3 to tasks
12 to 15. The srun command binds each task to one core (through ——cpu-bind flag), sets the turbo frequency

and enables EAR verbosity. Below there is the output message shown by the batch scheduler (i.e., SLURM):
cpu-bind=MASK ice2745, task 0 0 [23363]: mask 0x10000000000000001 set

cpu-bind=MASK - ice2745, task 1 1 [23364]: mask 0x1000000000000000100000000 set
cpu-bind=MASK - ice2745, task 2 2 [23365]: mask 0x20000000000000002 set
cpu-bind=MASK - ice2745, task 3 3 [23366]: mask 0x2000000000000000200000000 set
cpu-bind=MASK - ice2745, task 4 4 [23367]: mask 0x40000000000000004 set
cpu-bind=MASK - ice2745, task 5 5 [23368]: mask 0x4000000000000000400000000 set
cpu-bind=MASK - ice2745, task 6 6 [23369]: mask 0x80000000000000008 set
cpu-bind=MASK - ice2745, task 7 7 [23370]: mask 0x8000000000000000800000000 set
cpu-bind=MASK - ice2745, task 8 8

[]
[]
[]
[]
[]
[]
[]
[23371]: mask 0x100000000000000010 set
[]
[]
[]
[]
[]
[]
[]

cpu-bind=MASK - ice2745, task 9 9 [23372]: mask 0x10000000000000001000000000 set
cpu-bind=MASK - ice2745, task 10 10 [23373]: mask 0x200000000000000020 set
cpu-bind=MASK - ice2745, task 11 11 [23374]: mask 0x20000000000000002000000000 set
cpu-bind=MASK - ice2745, task 12 12 [23375]: mask 0x400000000000000040 set
cpu-bind=MASK - ice2745, task 13 13 [23376]: mask 0x40000000000000004000000000 set
cpu-bind=MASK - ice2745, task 14 14 [23377]: mask 0x800000000000000080 set
cpu-bind=MASK - ice2745, task 15 15 [23378]: mask 0x80000000000000008000000000 set

We can see here that SLURM spreaded out tasks accross the two sockets of the node, e.g., task 0 runs on CPUs
0 and 64, task 1 runs on CPUs 32 and 96. Below output shows how EAR sets and verboses CLOS list per CPU in
the node. Following the same example, you can see that CPUs 0, 64, 32 and 96 have priority/CLOS 0. Note that
those CPUs not involved in the job show a -1.

Setting user-provided CPU priorities...
PRIOO: MAX GHZ - 0.0 GHz (high)
PRIOl: MAX GHZ - 0.0 GHz (high)
PRIO2: MAX GHZ - 0.0 GHz (low)
PRIO3: MAX GHZ - 0.0 GHz (low)

[000, 0] [001, 0] [002, 1] [003, 1] [004, 2] [005, 2] [006, 3] [007, 3]
[008,-1] [009,-1] [010,-1] [011,-1] [012,-1] [013,-1] [014,-1] [015,-1]
[016,-1] [017,-1] [018,-1] [019,-1] [020,-1] [021,-1] [022,-1] [023,-1]
[024,-1] [025,-1] [026,-1] [027,-1] [028,-1] [029,-1] [030,-1] [031,-1]
[032, 0] [033, 0] [034, 1] [035, 1] [036, 2] [037, 2] [038, 3] [039, 3]

Generated by Doxygen

https://networkbuilders.intel.com/solutionslibrary/intel-speed-select-technology-turbo-frequency-intel-sst-tf-overview-user-guide
https://docs.kernel.org/admin-guide/pm/intel-speed-select.html

26 Environment variables

[040,-1] [041,-1] [042,-1] [043,-1] [044,-1] [045,-1] [046,-1] [047,-1]
[048,-1] [049,-1] [050,-1] [051,-1] [052,-1] [053,-1] [054,-1] [055,-1]
[056,-1] [057,-1] [058,-1] [059,-1] [060,-1] [061,-1] [062,-1] [063,-1]
[064, 0] [065, 0] [0Oe66, 1] [067, 1] [068, 2] [069, 2] [070, 3] [071, 3]
[072,-11 [073,-1] [074,-1] [075,-1] [076,-1] [077,-1] [078,-1] [079,-1]
[080,-1] [081,-1] ([082,-1] [083,-1] [084,-1] [085,-1] [086,—-1] [087,-1]
[0s8s8,-1] [089,-1] [090,-1] [091,-1] [092,-1] [093,-1] [094,-1] [095,-1]
[096, 0] [097, O] ([098, 1] [099, 1] ([100, 2] ([101, 2] [102, 3] [103, 3]
[104,-1] [105,-1] [106,-1] [107,-1] ([108,-1] [109,-1] [110,-1] [111,-1]
[112,-1] [113,-1] ([114,-1] ([115,-1] [1l1le6,-1] ([117,-1] ([118,-1] [119,-1]
[120,-1] [121,-1] ([122,-1] ([123,-1] ([124,-1] ([125,-1] [126,-1] [127,-1]

4.4.5.2 EAR_PRIO_CPUS

A list of priorities that should have the same length as the number of CPUs your job is using. This configuration lets
to set up CPUs CLOS in a more low level way: the n-th priority value of the list will set the priority of the n-th
CPU your job is using.

This way of configuring priorities rules the user to know exactly the affinity of its job's tasks before launching
the application, so it becomes harder to use if your goal is the same as the one you can get by setting the
above environment variable: task-focused CLOS setting. But it becomes more flexible when the user has more
control over the affinity set to its application, because you can discriminate between different CPUs assigned to the
same task. Moreover, this is the only way to set different priorities over different threads in no-MPI applications.

4.4.6 Disabling EAR's affinity masks usage

For both [Load Balancing](load-balancing) and Intel(R) SST support, EAR uses processes' affinity mask read at the
beginning of the job. If you are working on an application that changes (or may change) the affinty mask of tasks, this
can lead some miss configuration not detected by EAR. To avoid any unexpected problem, we highly recommend
you to export EAR_NO_AFFINITY_MASK environment variable even you are not planning to work with some
of the mentioned features.

4.5 Data gathering

451 EAR_GET_MPI_STATS

Use this variable to generate two files at the end of the job execution that will contain global, per process MPI infor-
mation. You must specify the prefix (optionally with a path) of the filename. One file ([path/Jprefix.ear_mpi_stats.«
full_nodename.csv) will contain a resume about MPI throughput (per-process), while the other one ([path/Jprefix.«
ear_mpi_calls_stats.full_nodename.csv) will contain a more fine grained information about different MPI call types.
Here is an example:

'#/bin/bash

#SBATCH -j mpi_job_name
#SBATCH -n 48

MPI_INFO_DST=$SLURM_JOBID-mpi_stats
mkdir SMPI_INFO_DST

export SLURM_EAR_GET_MPI_STATS=$MPI_INFO_DST/$SLURM_JOB_NAME
srun -n 48 --ear=on ./mpi_app

At the end of the job, two files will be created at the directory named \<job_id\>-mpi_stats located in
the same directory where the application was submitted. They will be named mpi_job_name.ear_mpi_stats.full
nodename.csv and mpi_job_name.ear_mpi_calls_stats.full_nodename.csv. File pairs will be created for each node
involved in the job.

Take into account that each process appends its own MPI statistics to files. This behavior does not guarantee that
the header of files will be on the first line of them, as only one process writes it. You must move it at the top of each
file manually before reading them with some tool you use to visualize and work with CSV files, e.g., spreadsheet, a
R or Python package.

Below table shows fields available by ear_mpi_stats file:

Generated by Doxygen

4.5 Data gathering

27

Field Description
mrank The EAR's internal node ID used to identify the node.
Irank The EAR's internal rank ID used to identify the process.

total_mpi_calls

The total number of MPI calls.

exec_time

The execution time, in microseconds.

mpi_time

The time spent in MPI calls, in microseconds.

perc_mpi_time

The percentage of total execution time (i.e., exec_time) spent in MPI calls.

Below table shows fields available by ear_mpi_calls_stats file:

Field Description

Master The EAR's internal node ID used to identify the node.

Rank The EAR's internal rank ID used to identify the process.

Total MPI calls The total number of MPI calls.

MPI_time/Exec_time | The ration between time spent in MPI calls and the total execution time.

Exec time The execution time, in microseconds.

Sync_time Time spent (in microseconds) in blocking synchronization calls, i.e., MPI_Wait, MPI_«
Waitall, MPI_Waitany, MPI_Waitsome and MPI_Barrier.

Block_time Time spent in blocking calls, i.e., MPI_Allgather, MPI_Allgatherv, MPI_Allreduce, MPIl«
_Alltoall, MPI_Alltoallv, MPI_Barrier, MP|_Bcast, MPl_Bsend, MP|_Cart_create, MPl«
_Gather, MPI_Gatherv, MPI_Recv, MPI_Reduce, MPI_Reduce_scatter, MPI_Rsend,
MPI_Scan, MPI_Scatter, MPI_Scatterv, MPI_Send, MPIl_Sendrecv, MP|l_Sendrecv_«-
replace, MPI_Ssend and all Wait calls of Sync_time field.

Collec_time Time spent in blocking collective calls, i.e., MPI_Allreduce, MPI_Reduce and MPI_«

Reduce_scatter.

Total MPI sync calls

Total number of synchronization calls.

Total blocking calls

Total number of blocking calls.

Total collective calls

Total number of collective calls.

Gather

Total number of blocking Gather calls, i.e., MPI_Allgather, MPI_Allgatherv, MPI_Gather
and MPI_Gatherv.

Reduce Total number of blocking Reduce calls, i.e., MPI_Allreduce, MPI_Reduce and MPI_«
Reduce_scatter.

All2all Total number of blocking All2all calls, i.e., MPI_Alltoall and MPI_Alltoallv.

Barrier Total number of blocking Barrier calls, i.e., MPI_Barrier.

Bcast Total number of blocking Bcast calls, i.e., MPI_Bcast.

Send Total number of blocking Send calls, i.e., MPI_Bsend, MPI_Rsend, MPI_Send and
MPI_Ssend.

Comm Total number of blocking Comm calls, i.e., MPI_Cart_create.

Receive Total number of blocking Receive calls, i.e., MPI_Recv.

Scan Total number of blocking Scan calls, i.e., MPI_Scan.

Scatter Total number of blocking Scatter calls, i.e., MPI_Scatter and MPI_Scatterv.

SendRecv Total number of blocking SendRecv calls, i.e., MPI_Sendrecv, MPI_Sendrecv_replace.

Wait Total number of blocking Wait calls, i.e., all MPI_Wait calls.

t_Gather Time (in microseconds) spent in blocking Gather calls.

t_Reduce Time (in microseconds) spent in blocking Reduce calls.

t_All2all Time (in microseconds) spent in blocking All2all calls.

t_Barrier Time (in microseconds) spent in blocking Barrier calls.

t_Bcast Time (in microseconds) spent in blocking Bcast calls.

t_Send Time (in microseconds) spent in blocking Send calls.

t_ Comm Time (in microseconds) spent in blocking Comm calls.

t_Receive Time (in microseconds) spent in blocking Receive calls.

Generated by Doxygen

28 Environment variables

Field Description
t_Scan Time (in microseconds) spent in blocking Scan calls.
t_Scatter Time (in microseconds) spent in blocking Scatter calls.
t_SendRecv Time (in microseconds) spent in blocking SendRecv calls.
t_ Wait Time (in microseconds) spent in blocking Wait calls.

4.5.2 EAR_TRACE_PLUGIN

EAR offers the chance to generate Paraver traces to visualize runtime metrics withthe Paraver tool. Paraver
is a visualization tool developed by CEPBA-Tools team and currently maintained by the Barcelona Supercomputing
Center’s tools team.

The EAR trace generation mechanism was designed to support different trace generation plug-ins although the Par-
aver trace plug-in is the only supported by now. You must set the value of this variable to t racer_paraver.so
to load the tracer. This shared object comes with the official EAR distribution and it is located at SEAR_INSTALL«
_PATH/1lib/plugins/tracer. Thenyou need to setthe EAR_TRACE_PATH variable (see below) to specify
the destination path of the generated Paraver traces.

4.5.3 EAR_TRACE_PATH

Specify the path where you want to store the trace files generated by the EAR Library. The path must be fully
created. Otherwise, the Paraver tracer plug-in won’t be loaded.

Here is an example of the usage of the above explained environment variables:
#!/bin/bash

export SLURM_EAR_TRACE_PLUGIN=tracer_paraver.so
export SLURM_EAR_TRACE_PATH=$ (pwd) /traces

mkdir -p $SLURM_EAR_TRACE_PATH

srun -n 10 --ear=on ./mpi_app

4.5.4 REPORT_EARL_EVENTS

Use this variable (i.e., export SLURM_REPORT_EARIL_EVENTS=1)to make EARL send internal events to the
[Database](EAR-Database). These events are useful to have more information about Library's behaviour, like when
DynAIS xx(REFERENCE DYNAIS)xx is turned off, the computational phase EAR is guessing the application is on
or the status of the applied policy *x(REF POLICIES)**. You can query job-specific events through eacct -3
<JobID> -x,and you will get a table of all reported events:

Field name Description

Event_ID Internal ID of the event stored at the Database.

Timestamp yyyy-mm-dd hh:mm:ss.

Event_type | Which kind of event is it. Possible event types explained below.

Job _id The JoblID of the event.
Value The value stored with the event. Categorical events explained below.
node_id The node from where the event was reported.

Generated by Doxygen

https://tools.bsc.es/paraver

4.5 Data gathering 29

4.5.4.1 Event types

Below are listed all kind of event types you can get when requesting job events. For categorical event values, the
(value, category) mapping is explained.

 policy_error Reported when the policy couldn't select the optimal frequency.
» dynais_off Reported when DynAlS is turned off and the Library becomes in periodic monitoring mode.

» earl_state The internal EARL state. Possible values are:

0 This is the initial state and stands for no iteration detected.

1 EAR starts computing the signature

2 EAR computes the local signature and executes the per-node policy.

3 This state computes a new signature and evaluates the accuracy of the policy.

4 Projection error.

5 This is a transition state to recompute EARL timings just in case we need to adapt it because of the
frequency selection.

6 Signature has changed.

» optim_accuracy The internal optimization policy state. Possible values are:

0 Policy not ready.

1 Policy says all is ok.

2 Policy says it'n not ok.

3 Policy wants to try again to optimize.

The above event types may be useful only for advanced users. Please, contact with
ear—support@bsc.es if you want to know more about EARL internals.

+ energy_saving Energy (in %) EAR is guessing the policy is saving.
« power_saving Power in (in %) EAR is guessing the policy is saving.

« performance_penalty Execution time (in %) EAR is guessing the policy is incrementing.

Generated by Doxygen

mailto:ear-support@bsc.es
mailto:ear-support@bsc.es

30

Environment variables

Generated by Doxygen

Chapter 5

Admin guide

5.1 EAR Components

EAR is composed of five main components:

* Node Manager (EARD). The Node Manager must have root access to the node where it will be running.

- Database Manager (EARDBD). The database manager requires access to the DB server (we support
MariaDB and Postgress). Documentation for Postgress is still under development.

+ Global Manager (EARGM). The global manager needs access to all node managers in the cluster as well

as access to database.

* Library (EARL)

* SLURM plugin

The following image shows the main interactions between components:

* Global
Control

* Local control
« Local
optimization

GEc?blzl <:| J <:| EAR DB * Accounting
Manager MariaDB Manager

* Support for
EAR EAR accounting

runtime T and control
library

Figure 5.1 EAR components diagram

For a more detailed information about EAR components, visit the Architecture page.

Generated by Doxygen

32 Admin guide

5.2 Quick Installation Guide

This section provides a, summed up, step by step installation and execution guide for EAR. For a more in depth ex-
planation of the necessary steps see the Installation from source page or the Installing from RPM section, following
the Configuration guide, or contact us at ear-support@bsc.es

5.2.1 EAR Requirements

Requirements to compile EAR are:

« C compiler.

« MPI compiler.

CUDA installation path if NVIDIA is used.
« Likwid path if Likwid is used.
* Freeipmi path if freeipmi is used.

* GSL is needed for coefficient computations.

To install EAR from rpm (only binaries) all these dependencies have been removed except mysgqiclient. However,
they are needed when running EAR.

SLURM must also be present if the SLURM plugin wants to be used. Since current EAR version only supports
automatic execution of applications with EAR library using the SLURM plugin, it must be running when EAR library
wants to be used (not needed for node monitoring).

Lastly, but not less important:

» The drivers for CPU frequency management (acpi-cpufreq) and Open IPMI must be present and loaded in
compute nodes.

» msr kernel module must be loaded in compute nodes.
» mariaDB or postgress server must be up and running.

» Hardware counters must be accessible for normal users. Set x/proc/sys/kernel/perf_event_paranoidx to 2 (or
less). Type sudo sh -c "echo 2 > /proc/sys/kernel/perf_event_paranoid" in com-
pute nodes.

Run . /configure —-help to see all the flags and options.

Generated by Doxygen

mailto:ear-support@bsc.es

5.2 Quick Installation Guide 33

5.2.2 Compiling and installing EAR
Once downloaded the code from repository, execute:

e autoreconf -1i.

./configure --prefix=ear-install-path \
EAR_TMP=ear-tmp-path \
EAR_ETC=ear—-etc-path \
CC=c-compiler-path \
MPICC=mpi-compiler-path \
CC_FLAGS=c-flags-compiler \
MPICC_FLAGS=mpi-flags \
--with-cuda=path-to-cuda \
MAKE_NAME=make_extension®

Additionally to the Makefile, MAKE_ NAME forces to copy the generated Makefile with the name Makefile._make_+«
extension_. It simplifies the fact of having multiple configurations (1 for each library version needed). More relevant
options are:

» The option ——disable-mpi must be set to generate a configuration for non-MPI version of the library.

+ Use MPI_VERSION=ompi for OpenMPI compatible version.

Before running make, review the Makefile and the configuration log to validate all the requirements of your instal-
lation have been automatically detected. In particular, if you need to use some specific library such likwid, freeipmi
or CUDA. If CUDA path is specified, EAR will be compiled with GPU support. Check also that MySQL ot Postgre«
SQL paths have been detected. You can use options USER and GROUP if you want to install EAR with a special
USER/GROUP.

The following shows how to configure EAR to be compiled with Intel MPI:
autoreconf -i

./configure —-prefix=/opt/ear CC=icc MPICC=mpiic MAKE_NAME=impi

make -f Makefile.impi

make -f Makefile.impi install

make —-f Makefile.impi doc.install

make —-f Makefile.impi etc.install

At this point the EAR binaries will be installed including one version of the EAR library for MPI (default), EAR
documentation, EAR service files for EAR daemons and templates for ear.conf files and SLURM plugin. The
configure tool tries to automatically detect paths to mysql and/or postgress, scheduler sources, etc. It is mandatory
to detect the scheduler path, by default SLURM is assumed. After the configure, check in the Makefile all the
options have been detected. After the make install, you should have the following folders in the ear-install-path: bin,
sbin, etc, lib, include, man. The bin directory includes commands and tools, the sbin includes EAR services, the lib
includes all the libraries and plugins, and etc includes templates and examples for EAR service files, ear.conf file,
the EAR module, etc.

5.2.3 Deployment and validation
5.2.3.1 Monitoring: Compute node and DB

Prepare the configuration

Either installing from sources or rpm, EAR installs a template for ear.conf file in SEAR_ETC/ear/ear.«+
conf.template and $SEAR_ETC/ear/ear.conf.full.template. The full version includes all fields.
Copy only one as SEAR_ETC/ear/ear.conf and update with the desired configuration. Go to the configuration
section to see how to do it. The ear.conf is used by all the services. It is recommended to have in a shared
folder to simplify the changes in the configuration.

EAR module

Generated by Doxygen

34 Admin guide

Install and load EAR module to enable commands. It can be found at SEAR_ETC/module. You can add ear
module whan it is not in standard path by doing module use $EAR_ETC/module and then module load
ear.

EAR Database

Create EAR database with edb_create, installed at SEAR_INSTALL_PATH/sbin. The edb_create -p
command will ask you for the DB root password. If you get any problem here, check first whether the node where
you are running the command can connect to the DB server. In case problems persists, execute edb_create -0 to
report the specific SQL queries generated. In case of trouble, contact with ear-support@bsc.es oropenin
issue.

Energy models

EAR uses a power and performance model based on systems signatures. These system signatures are stored in
coefficient files.

Before starting EARD, and just for testing, it is needed to create a dummy coefficient file and copy in the coefficients
path, by default placed atSEAR_ETC/coeffs. Use the coeffs_null application from tools section.

EAR version 4.1 does not require null coefficients.

EAR services

Create soft links or copy EAR service files to start/stop services using system commands such as systemctl in
the services folder. EAR service files are generated at SEAR_ETC/systemd and they can usually be placed in
$(ETC) /systemd.

» EARD must be started on compute nodes.

+ EARDBD must be started on service nodes (can be any node with DB access).

Enable and start EARDs and EARDBDs via services (e.g., sudo systemctl start eard, sudo
systemctl start eardbd). EARDBD and EARD outputs can be found at SEAR_TMP/eardbd.«
server.logand $SEAR_TMP/eard. log respectively when DBDaemonUselLog and NodeUselLog options are
setto 7inthe ear. conf file, respectively. Otherwise, their outputs are generated at stderr and can be seen using
the journalctl command (i.e., journalctl -u eard).

By default, a certain level of verbosity is set. It is not recommended to modify it but you can change it by modifying
the value of constants in file src/common/output /output_conf.h.

Quick validation

Check that EARDs are up and running correctly with econtrol --status (note that daemons will take around
a minute to correctly report energy and not show up as an error in econtrol). EARDs create a per-node text file with
values reported to the EARDBD (local to compute nodes). In case there are problems when running econtrol, you
can also find this file at SEAR_TMP /nodename .pm_periodic_data.txt.

Check that EARDs are reporting metrics to database with ereport. ereport -n all should report the total
energy sent by each daemon since the setup.

Generated by Doxygen

mailto:ear-support@bsc.es

5.2 Quick Installation Guide 35

5.2.3.2 Monitoring: EAR plugin

» Set up EAR's SLURM plugin (see the configuration section for more information).
It is recommented to create a soft link to the SEAR_ETC/slurm/ear.plugstack.conf

fileinthe /etc/slurm/plugstack.conf.d directory to simplify the EAR plugin management.
For a first test it is recommened to set default=o0ff inthe ear.plugstack.conf

(to disable the automatic loading of the EAR library).
EAR plugin validation

At this point you must be able to see EAR options when doing, for example, srun —--help. You must see
something like below as part of the output. The EAR plugin must be enabled at login and compute nodes.

[user@hostname ~]$ srun --help
Usage: srun [OPTIONS(0)... [executable(0) [args(0)...]1] [: [OPTIONS(N)...]] executable(N) [args(N)...]

Parallel run options:

Constraint options:

Consumable resources related options:

Affinity/Multi-core options: (when the task/affinity plugin is enabled)

Options provided by plugins:

——ear=on|off Enables/disables Energy Aware Runtime Library

——ear-policy=type Selects an energy policy for EAR
{type=default, gpu_monitoring,monitoring,min_energ-
y,min_time, gpu_min_energy,gpu_min_time}

——ear-cpufreg=frequency Specifies the start frequency to be used by EAR
policy (in KHz)

——ear-policy-th=value Specifies the threshold to be used by EAR policy
(max 2 decimals) {value=[0..1]}

—-—ear-user-db=file Specifies the file to save the user applications
metrics summary ’file.nodename.csv’ file will be
created per node. If not defined, these files
won’t be generated.

——ear-verbose=value Specifies the level of the
verbosity{value=[0..1]}; default is O

—-ear-learning=value Enables the learning phase for a given P_STATE
{value=[1l..n]}

—-—ear-tag=tag Sets an energy tag (max 32 chars)

Help options:
-h, —--help show this help message
—--usage display brief usage message

Other options:
-V, —--version output version information and exit

» Submit one application via SLURM and check that it is correctly reported to the database with eacct com-
mand.

Note that only privileged users can check other users’ applications.

» Submit one MPI application (corresponding with the version you have compiled) with ——ear=on and check
that now the output of eacct includes the Library metrics.

» Setdefault=on to setthe EAR Library loading by defaultatear .plugstack.conf. If default is turned
off, EARL can be explicitly loaded by setting the flag ——ear=o0f f at job submission.

At this point, you can use EAR for monitoring and accounting purposes but it cannot use the power policies offered by
EARL. To enable them, first perform a learning phase and compute node coefficients. See the EAR learning phase
wiki page. For the coefficients to be active, restart daemons.

Important Reloading daemons will NOT make them load coefficients, restarting the service is the only
way.

Generated by Doxygen

36 Admin guide

5.2.4 EAR Library versions: MPI vs. Non-MPI

As commented in the overview, the EAR Library is loaded next to the user MPI application by the EAR Loader. The
Library uses MPI symbols, so it is compiled by using the includes provided by your MPI distribution. The selection of
the library version is automatic at runtime, but it is not required during the compilation and installation steps. Each
compiled library version has its own file nhame that has to be defined by the MPI_VERSTION variable during the
./configure or by editing the root Makefile.

The name list per distribution is exposed in the following table:

Distribution Name MPI_VERSION value
Intel MPI libear.so (default) | not required
MVAPICH libear.so (default) | not required
OpenMPI libear.ompi.so ompi

If different MPI distributions share the same library name, it means their symbols are compatible between them, so
compiling and installing the library one time will be enough. However, if you provide different MPI distributions to
users, you will have to compile and install the library multiple times.

EAR makefiles include a specific target for each EAR component, supporting full or partial updates:

Command Description
make —-f Makefile.make_extension install Reinstall all the files except et c and doc.
make —-f Makefile.make_extension earl.+ Reinstall only the EARL.
install
make —-f Makefile.make_extension eard.+« Reinstall only the EARD.
install
make —-f Makefile.make_extension earplug.+ Reinstall only the EAR SLURM plugin.
install
make —f Makefile.make_extension eardbd.+ Reinstall only the EARDBD.
install
make —f Makefile.make_extension eargmd.+« Reinstall only the EARGMD.
install
make —-f Makefile.make_extension reports.+«+ Reinstall only report plugins
install

Before compiling new libraries you have to install by typing make install. Then you can run the
./configure again, changing the MPICC, MPICC_FLAGS and MPI_VERSION variables, or just opening
the root Makefile and edit the same variables and MPI_BASE, which just sets the MPI installation root path. Now
type make full to perform a clean compilation and make earl.install, to install only the new version of
the library.

If your MP1 version is not fully compatible, please contact ear-support@bsc.es.

See the User guide to check the use cases supported and how to submit jobs with EAR.

5.3 Installing from RPM

EAR includes the specification files to create an rpm from an already existing installation. The spec file is placed at
etc/rpms. To create the RPM it is needed a valid installation from source. The RPM can be part of the system
image. Visit the Requirements page for a quick overview of the requirements.

Generated by Doxygen

mailto:ear-support@bsc.es

5.3 Installing from RPM 37

Execute the rpmbuild. sh script to create the EAR rpm file. Once created, it can be included in the compute
nodes images. It is recommened only when no more changes are expected on the installation. Once you have the
rpm file, execute the following steps:

» Before the installation, make sure the installation path is accessible by all the computing nodes. Do the
same in the folder where you want to set the temporary files (it will be called $ (EAR_TMP) in this guide for
simplicity).

« Default paths are /usr and /etc.

* Runrpm —-ivh --relocate /usr=/new/install/path —--relocate /etc=/new/etc/path

ear.version.rpm.

You can also use the ——nodeps if your dependency test fails.

» During the installation the configuration files % . in are compiled to the ready to use version, replacing tags
for correct paths. You will have more information of those files in the following pages. Check the next section
for more information.

* Type rpm —e ear.version to uninstall

5.3.1 Installation content

The x.in configuration files are compiled into etc/ear/ear.conf.template and etc/ear/ear.«
full.conf.template, etc/module/ear, etc/slurm/ear.plugstack.conf and various
etc/systemd/ear*.service. You can find more information in the configuration page. Below table de-
scribes the complet heriarchy of the EAR installation:

Directory Content / description
/usr/1lib Libraries and the scheduler plugin.
/usr/lib/plugins | EAR plugins.

/usr/bin EAR commands.

/usr/bin/tools EAR tools for coefficients computation.

/usr/sbin Privileged components: EARD, EARDBD, EARGMD.
/etc/ear Configuration files templates.

/etc/ear/coeffs Folder to store coefficient files.

/etc/module EAR module.

/etc/slurm EAR SLURM plugin configuration file.
/etc/systemd EAR service files.

5.3.2 RPM requirements

EAR uses some third party libraries. EAR RPM will not ask for them when installing but they must be available in
LD_LIBRARY_PATH when running an application and you want to use EAR. Depending on the RPM, different
version must be required for these libraries:

Library Minimum version References
MPI - -
MySQL* 15.1 MySQL or MariaDB
PostgreSQLx | 9.2 PostgreSQL

Generated by Doxygen

https://mysql.com
https://mariadb.org/
https://www.postgresql.org/

38 Admin guide

Library Minimum version References
Autoconf 2.69 Website
GSL 1.4 Website

« Just one of them required.

These libraries are not required, but can be used to get additional functionality or metrics:

Library Minimum version References
SLURM 17.02.6 Website
PBSsx 2021 PBSProor OpenPBS
CUDA/NVML | 7.5 CUDA
CUPTIxx 7.5 CUDA
Likwid 5.21 Likwid
FreelPMI 1.6.8 FreeIPMI
OneAPI/LOxx | 1.7.9 OneAPT
LibRedFish*x | 1.3.6 LibRedFish

xx These will be available in next release.

Also, some drivers has to be present and loaded in the system when starting EAR:

Driver File Kernel version References
CPUFreq kernel/drivers/cpufreqg/acpi-cpufreq.ko | 3.10 Information
Open IPMI | kernel/drivers/char/ipmi/*.ko 3.10 Information

5.4 Starting Services
The best way to execute all EAR daemon components (EARD, EARDBD, EARGM) is by the unit services method.

NOTE EAR uses a MariaDB/MySQL server. The server must be started before EAR services are
executed.

The way to launch the EAR daemons is via unit services. The generated unit services for the EAR Daemon, EAR
Global Manager Daemon and EAR Database Daemon are generated and installed in $ (EAR_ETC) /systemd.
You have to copy those unit service files to your sy stemd operating system folder and then use the systemct1
command to run the daemons. Check the EARD, EARDBD, EARGMD pages to find the precise execution com-
mands.

When using systemct1l commands, you can check messages reported to stderr using journalctl. For
instance: journalctl -u eard -f. Notethatif NodeUseLogissetto1inear.conf, the messages will
not be printedto stderr butto SEAR_TMP/eard. loginstead. DBDaemonUseLogand Globalmanager«
UseLog options in ear . conf specifies the output for EARDBD and EARGM, respectivelly.

Additionally, services can be started, stopped or reloaded on parallel using parallel commands such as pdsh. As
an example: sudo pdsh -w nodelist systemctl start eard.

Generated by Doxygen

https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/gsl/
https://slurm.schedmd.com/
https://www.altair.com.es/pbs-professional/
https://www.openpbs.org/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://github.com/RRZE-HPC/likwid
https://www.gnu.org/software/freeipmi/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.0k5fbb
https://github.com/DMTF/libredfish
https://wiki.archlinux.org/index.php/CPU_frequency_scaling
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/cwlin/configuring-the-open-ipmi-driver.html

5.5 Updating EAR with a new installation 39

5.5 Updating EAR with a new installation

In some cases, it might be a good idea to create a new install instead of updating your current one, like trying new
configurations or when a big update is released.

The steps to do so are:

Install EAR in the new folder

Replicate old etc (including ear.conf and coefficients) in the new one and update ear.conf with the
new ETC path and whatever changes may be needed.

Update EAR services in /etc/systemd/system folder (or equivalent, depending on your OS). Service
files include ETC path and the absolute path for binaries.

» Update /etc/slurm/plugstag.conf with the new paths.

+ Create a new EAR module with the updated paths.

Once all that is done, one should have two complete EAR installs that can be switched by changing the binaries
that are executed by the services and changing the path in plugstag.conf.

5.6 Next steps

For a better overview of the installation process, return to the installation guide. To continue the installation, visit the
configuration page to set up properly the EAR configuration file and the EAR SLURM plugin stack file.

Generated by Doxygen

40

Admin guide

Generated by Doxygen

Chapter 6

Installation from source

6.1 Requirements

EAR requires some third party libraries and headers to compile and run, in addition to the basic requirements such
as the compiler and Autoconf. This is a list of these libraries, minimum tested versions and its references:

Library Minimum version References
MPI - -
MySQLx 15.1 MySQL or MariaDB
PostgreSQLx | 9.2 PostgreSQL
Autoconf 2.69 Website
GSL 1.4 Website

+ Just one of them required.

These libraries are not required, but can be used to get additional functionality or metrics:

xx These will be available in next release.

Also, some drivers has to be present and loaded in the system:

Library Minimum version References
SLURM 17.02.6 Website
PBSsx 2021 PBSProor OpenPBS
CUDA/NVML | 7.5 CUDA
CUPTIxx 7.5 CUDA
Likwid 5.2.1 Likwid
FreelPMI 1.6.8 FreeIPMI
OneAPI/LOxx | 1.7.9 OneAPT
LibRedFish*x | 1.3.6 LibRedFish

Driver File Kernel version References
CPUFreq kernel/drivers/cpufreg/acpi-cpufreg.ko | 3.10 Information
Open IPMI | kernel/drivers/char/ipmi/x.ko 3.10 Information

Generated by Doxygen

https://mysql.com
https://mariadb.org/
https://www.postgresql.org/
https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/gsl/
https://slurm.schedmd.com/
https://www.altair.com.es/pbs-professional/
https://www.openpbs.org/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://github.com/RRZE-HPC/likwid
https://www.gnu.org/software/freeipmi/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.0k5fbb
https://github.com/DMTF/libredfish
https://wiki.archlinux.org/index.php/CPU_frequency_scaling
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/cwlin/configuring-the-open-ipmi-driver.html

42

Installation from source

Lastly, the compilers: EAR uses C compilers. It has been tested with both Intel and GNU.

Compiler Comment Minimum version | References
GNU Compiler Collection (GCC) | For the library and daemon | 4.8.5 Website
Intel C Compiler (ICC) For the library and daemon | 17.0.1 Website

6.2

Compilation and installation guide summary

1. Before the installation, make sure the installation path is accessible by all the computing nodes. Do the same
in the folder where you want to set the configuration files (it will be called $ (EAR_ETC) in this guide for

simplicity).

2. Generate Autoconf's configure program by typing autoreconf -i.

3. Read sections below to understand how to properly set the configure parameters.

4. Compile EAR components by typing . /configure

tory.

.., make and make install in the root direc-

5. Type make etc.install toinstall the content of $ (EAR_ETC). It is the configuration content, but that
configuration will be expanded in the next section. You have a link at the bottom of this page.

6.3 Configure options

configure is based on shell variables which initial value could be given by setting variables in the command line,
or in the environment. Take a look to the table with the most popular variables:

Variable Description

MPICC MPI compiler.

CcC C compiler command.

MPICC_FLAGS | MPI compiler flags.

CFLAGS C compiler flags.

CC_FLAGS Also C compiler flags.

LDFLAGS Linker flags. E.g. “-L<lib dir>" if you have libraries in a nonstandard directory <lib dir>.

LIBS Libraries to pass to the linker. E.g. -I<library>’.

EAR_TMP Defines the node local storage as 'var', 'tmp' or other tempfs file system (default: /var/ear)
(you can alo use —localstatedir=DIR).

EAR_ETC Defines the read-only single-machine data as 'etc' (default: EPREFIX/etc) (you can also use
—sharedstatedir=DIR).

MAN Defines the manual directory (default: PREFIX/man) (you can use also —mandir=DIR).

DOC Defines the documentation directory (default: PREFIX/doc) (you can use also —docdir=DIR).

MPI_VERSION | Adds a suffix to the compiled EAR library name. Read further down this page for more
information.

USER Owner user of the installed files.

GROUP Owned group of the installed files

MAKE_NAME It adds an additional Makefile with a suffix.

» This is an example of CC, CFLAGS and DEBUG variables overwriting:
./configure CC=icc CFLAGS=-g EAR_ETC=/hpc/opt/etc

Generated by Doxygen

https://gcc.gnu.org/
https://software.intel.com/en-us/c-compilers

6.3 Configure options 43

You can choose the root folder by typing . /configure —--PREFIX=<path>. But there are other options in
the following table:

Definition Default directory Content / description
<PREFIX> /usr/local Installation path
<EAR_ETC> | <PREFIX>/etc Configuration files.
<EAR_TMP> | /var/ear Pipes and temporal files.

You have more installation options information by typing . /configure —--help. If you wantto change the value
of any of this options after the configuration process, you can edit the root Makefile. All the options are at the top of
the text and its names are self-explanatory.

Adding required libraries installed in custom locations The configure script is capable to find libraries
located in custom location if a module is loaded in the environment or its path is included in LD_LIBRARY_«
PATH. If not, you can help configure to find SLURM, or other required libraries in case you installed in a custom
location. It is necessary to add its root path for the compiler to see include headers and libraries for the linker. You
can do this by adding to it the following arguments:

Argument Description
—with-cuda=<path> Specifies the path to CUDA installation.
—with-freeipmi=<path> | Specify path to FREEIPMI installation.
—with-gsl=<path> Specifies the path to GSL installation.

—with-likwid=<path> Specifies the path to LIKWID installation.
—with-mysgl=<path> Specify path to MySQL installation.
—with-pgsql=<path> Specify path to PostgreSQL installation.
—with-pbs Enable PBS components.
—with-slurm=<path> Specifies the path to SLURM installation.

» This is an example of CC overwriting the CUDA path specification:
./configure —--with-cuda=/path/to/CUDA

If unusual procedures must be done to compile the package, please try to figure out how configure could check
whether to do them and contact the team to be considered for the next release. In the meantime, you can overwrite
shell variables or export its paths to the environment (e.g. LD_LIBRARY).

Additional configure flags Also, there are additional flags to help administrator increase the compatibility of EAR
in nodes.

Argument Description
—disable-rpath Disables the RPATH included in binaries to specify some dependencies location.
—disable-avx512 | Replaces the AVX-512 function calls by AVX-2.
—disable-gpus The GPU monitoring data is not allocated nor inserted in the database.
—disable-mpi Compiles the non-mpi version of the library.

Generated by Doxygen

44 Installation from source

6.4 Pre-installation fast tweaks

Some EAR characteristics can be modified by changing the value of the constants defined in src/common/config/config«
_def .h. You can open it with an editor and modify those pre-procesor variables to alter the EAR behaviour.

Also, you can quickly switch the user/group of your installation files by modifying the CHOWN_USR/CHOWN_GRP
variables in the root Makefile.

6.5 Library distributions/versions

As commented in the overview, the EAR library is loaded next to the user MPI application by the [EAR Loader](EAR
Loader). The library uses MPI symbols, so it is compiled by using the includes provided by your MPI distribution.
The selection of the library version is automatic in runtime, but in the compiling and installation process is not
required. Each compiled library has its own file name that has to be defined by the MPT_ VERSION variable during
./configure or by editing the root Makefile. The name list per distribution is exposed in the following table:

Distribution Name MPI_VERSION variable
Intel MPI libear.so (default) | it is not required
MVAPICH libear.so (default) | it is not required
OpenMPI libear.ompi.so ompi

If different MPI distributions shares the same library name, it means that its symbols are compatible between them,
so compiling and installing the library one time will be enough. However, if you provide different MPI distributions to
the users, you will have to compile and install the library multiple times.

Before compiling new libraries you have to install by typing make install. Then you can run the
./configure again, changing the MPICC, MPICC_FLAGS and MPI_VERSION variables, or just opening
the root Makefile and edit the same variables and MPI_BASE, which just sets the MPI installation root path.
Now type make full to perform aclean compilation and make earl.install,toinstall only the new version
of the library.

If your MP1 version is not fully compatible, please contact ecar-support@bsc.es. We will add compatibility to
EAR and give you a solution in the meantime.

6.6 Other useful flags

You can install individual components by doing: make eard.install toinstall EAR Daemon, make earl.<«
install to install EAR Library, make eardbd.install EAR Database Manager, make eargmd.<«
install EAR Global Manager and make commands.install the EAR command binaries.

6.7 Installation content

This is the list of the inner installation folders and their content:

Root Directory Content / description
<PREFIX> Nlib Libraries.
<PREFIX> /Nlib/plugins | Plugins.

Generated by Doxygen

mailto:ear-support@bsc.es

6.8 Fine grain tuning of EAR options

45

6.8 Fine grain tuning of EAR options

Root Directory Content / description
<PREFIX> /bin EAR commands.
<PREFIX> /bin/tools EAR tools for coefficients.
<PREFIX> /sbin Privileged components.
<PREFIX> /man Documentation.
<EAR_ETC> | /ear Configuration file.
<EAR _ETC> | /ear/coeffs | Coefficient files store.
<EAR_ETC> | /module EAR module.
<EAR_ETC> | /slurm ear.plugstack.conf.
<EAR_ETC> | /systemd EAR service files.

Some options such as the maximum number of CPUs or GPUs supported are defined in src/common/config files.

It is not recommended to modify these files but some options and default values can be set by modifying them.

6.9 Next step

For a better overview of the installation process, return to our Quick installation guide. To continue the installation,

visit the configuration page to set up properly the EAR configuration file and the SLURMs plugin stack file.

Generated by Doxygen

46

Installation from source

Generated by Doxygen

Chapter 7

Architecture

7.1 EAR Node Manager

The EAR Daemon (EARD) is a per-node process that provides privileged metrics of each node as well as a peri-
odic power monitoring service. Said periodic power metrics can be sent to EAR's database directly, via the EAR
Database Daemon (EARDBD) or by using some of the provided report plug-ins.

See the EARDBD section and the configuration page for more information about the EAR Database Manager and
how to to configure the EARD to send its collected data to it.

7.1.1 Overview
The node Daemon is the component in charge of providing any kind of services that requires privileged capabilities.
Current version is conceived as an external process executed with root privileges.
The EARD provides the following services, each one covered by one thread:
 Provides privileged metrics to EARL such as the average frequency, uncore integrated memory controller

counters to compute the memory bandwidth, as well as energy metrics (DC node, DRAM and package
energy).

 Implements a periodic power monitoring service. This service allows EAR package to control the total energy
consumed in the system.

+ Offers a remote API used by EARplug, EARGM and EAR commands. This API accepts requests such as get
the system status, change policy settings or notify new job/end job events.

7.1.2 Requirements

If using the EAR Database as the storage targe, EARD connects with EARDBD service, that has to be up before
starting the node daemon, otherwise values reported by EARD to be stored in the database, will be lost.

7.1.3 Configuration

The EAR Daemon uses the $ (EAR_ETC) /ear/ear.conf file to be configured. It can be dynamically config-
ured by reloading the service.

Please visit the EAR configuration file page for more information about the options of EARD and other components.

Generated by Doxygen

48 Architecture

7.1.4 Execution

To execute this component, these systemct 1 command examples are provided:

*» sudo systemctl start eard to start the EARD service
* sudo systemctl stop eard to stop the EARD service

+ sudo systemctl reload eard to force reloading the configuration of the EARD service.
Log messages are generated during the execution. Use journalctl command to see eard message:

* sudo journalctl -u eard -f

7.1.5 Reconfiguration

After executing a systemctl reload eardcommand, not all the EARD options will be dynamically updated.

The list of updated variables are:
DefaultPstates
NodeDaemonMaxPstate
NodeDaemonVerbose
NodeDaemonPowermonFreq
SupportedPolicies
MinTimePerformanceAccuracy

To reconfigure other options such as EARD connection port, coefficients, etc., it must be stopped and restarted
again. Visit the EAR configuration file page for more information about the options of EARD and other components.

7.2 EAR Database Manager

The EAR Database Daemon (EARDBD) acts as an intermediate layer between any EAR component that inserts
data and the EAR's Database, in order to prevent the database server from collapsing due to getting overrun with
connections and insert queries.

The Database Manager caches records generated by the EAR Library and the EARD in the system and reports it to
the centralized database. It is recommended to run several EARDBDs if the cluster is big enough in order to reduce
the number of inserts and connections to the database.

Also, the EARDBD accumulates data during a period of time to decrease the total insertions in the database, helping
the performance of big queries. By now just the energy metrics are available to accumulate in the new metric called
energy aggregation. EARDBD uses periodic power metrics sent by the EARD, the per-node daemon, including job
identification details (Job Id and Step Id when executed in a SLURM system).

7.2.1 Configuration

The EAR Database Daemon uses the $ (EAR_ETC) /ear/ear . conf file to be configured. It can be dynamically
configured by reloading the service.

Please visitthe EAR configuration file page for more information about the options of EARDBD and
other components.

Generated by Doxygen

7.3 EAR Global Manager 49

7.2.2 Execution
To execute this component, these systemct 1 command examples are provided:

* sudo systemctl start eardbd to startthe EARDBD service.
* sudo systemctl stop eardbd to stop the EARDBD service.

* sudo systemctl reload eardbd to force reloading the configuration of the EARDBD service.

7.3 EAR Global Manager

The EAR Global Manager Daemon (EARGMD) is a cluster wide component offering cluster energy monitoring
and capping. EARGM can work in two modes: manual and automatic. When running in manual mode, EARGM
monitors the total energy consumption, evaluates the percentage of energy consumption over the energy limit set
by the admin and reports the cluster status to the DB. When running in automatic mode, apart from evaluating the
energy consumption percentage it sends the evaluation to computing nodes. EARDs passes these messages to
EARL which re-applies the energy policy with the new settings.

Apart from sending messages and reporting the energy consumption to the DB, EARGM offers additional features
to notify the energy consumption: automatic execution of commands is supported and mails can also automatically
be sent. Both the command to be executed or the mail address can be defined in the ear . conf, where it can also
be specified the energy limits, the monitoring period, etc.

EARGM uses periodic aggregated power metrics to efficiently compute the cluster energy consumption. Aggregated
metrics are computed by EARDBD based on power metrics reported by EARD, the per-node daemon.

Note: if you have multiple EARGMs running, only 1 should be used for Energy management. To turn
off energy management for a certain EARGM simply set its energy value to 0.

7.3.1 Power capping

EARGM also includes an optional power capping system. Power capping can work in two different ways:

* Cluster power cap (unlimited): Each EARGM controls the power consumption of the nodes under them by
ensuring the global power does not exceed a set value. While the global power is under a percentage of the
global value, the nodes run without any cap. If it approaches said value, a message is sent to all nodes to
set their powercap to a pre-set value (via max_powercap in the tags section of ear.conf). Should the power
go back to a value under the cap, a message is sent again so the nodes run at their default value (unlimited
power).

+ Fine grained power cap control: Each EARGM controls the power consumption of the nodes under them and
redistributes a certain budget between the nodes, allocating more to nodes who need it. It guarantees that
any node has its default powercap allocation (defined by the powercap field in the tags section of ear.conf) if
it is running an application.

Furthermore, when using fine grained power cap control it is possible to have multiple EARGMs, each controlling a
part of the cluster, with (or without) meta-EARGMSs redistributing the power allocation of each EARGM depending
on the current needs of each part of the cluster. If no meta-EARGMs are specified, the power value each EARGM
has will be static.

Meta-EARGMs are NOT compatible with the unlimited cluster powercap mode.

Generated by Doxygen

50 Architecture

7.3.2 Configuration

The EAR Global Manager uses the $ (EAR_ETC) /ear/ear.conf file to be configured. It can be dynamically
configured by reloading the service.

Please visit the EAR configuration file page for more information about the options of EARGM and
other components.

Additonally, 2 EARGMs can be used in the same host by declaring the environment variable EARGMID to specify

which EARGM configuration each should use. If said variable is not declared, all EARGMs in the same host will
read the first entry.

7.3.3 Execution
To execute this component, these systemct 1 command examples are provided:

* sudo systemctl start eargmd to startthe EARGM service.
* sudo systemctl stop eargmd to stop the EARGM service.

* sudo systemctl reload eargmd to force reloading the configuration of the EARGM service.

7.4 The EAR Library

The EAR Library (EARL) is the core of the EAR package. The Library offers a lightweight and simple solution to
select the optimal frequency for applications at runtime, with multiple power policies each with a different approach
to find said frequency.

EARL uses the Daemon to read performance metrics and to send application data to EAR Database.

7.4.1 Overview

EARL is dynamically loaded next to the running applications by the EAR Loader. The Loader detects whether the
application is MPI or not. In case it is MPI, it also detects whether it is Intel or OpenMPI, and it intercepts the MPI
symbols through the PMPI interface, and next symbols are saved in order to provide compatibility with MPI or other
profiling tools. The Library is divided in several stages summarized in the following picture:

Mpi interception

DynAIS

Each Mpi call

New loop
Computing signature _
Signature
Performance & power models computed

Energy policies

\VAVIVAV

Generated by Doxygen

7.4 The EAR Library 51

1. Automatic detection of application outer loops. This is done by intercepting MPI calls and invoking the
Dynamic Application Iterative Structure detector algorithm. DynAlS is highly optimized for new Intel architec-
tures, reporting low overhead. For non-MPI applications, EAR implements a time-guided approach.

2. Computation of the application signature. Once DynAlIS starts reporting iterations for the outer loop, EAR
starts to compute the application signature. This signature includes: iteration time, DC power consump-
tion, bandwidth, cycles, instructions, etc. Since the DC power measurements error highly depends on the
hardware, EAR automatically detects the hardware characteristics and sets a minimum time to compute the
signature in order to minimize the average error.

Power(fn) = A(Rf,fn)*Power(Rf) + B(Rf,fn)*TPI(Rf) + C(Rf,n)

CPI(fn) = D(Rf,fn)*CPI(Rf) + E(Rf)*TPI(Rf) + F(Rf,fn)

TIME(fn) = TIME(Rf) * CPI(Rf,fn)/CPI(Rf) * (Rf/fn)

The loop signature is used to classify the application activity in different phases. The current EAR version sup-
ports the following phases for: 10 bound, CPU computation and GPU idle, CPU busy waiting and GPU computing,
CPU-GPU computation, and CPU computation (for CPU only nodes). For phases including CPU computation, the
optimization policy is applied. For other phases, the EAR library implements some predefined CPU/Memory/GPU
frequency settings.

1. Power and performance projection. EAR has its own performance and power models which requires the
application and the system signatures as an input. The system signature is a set of coefficients characterizing
each node in the system. They are computed during the learning phase at the EAR configuration step. EAR
projects the power used and computing time (performance) of the running application for all the available
frequencies in the system. These models are applied to CPU metrics and projects CPU performance and
power when varying the CPU frequency. Using these projections the optimization policy can select the optimal
CPU memory.

Hardware Application Time(Freq_j)

Power(Freq_j)

signature
(Node_i,Freq_i)

Signature
(Node_i,Freq_i)

Computed Computed Projections for
when installing at runtime all the
EAR available fregs.

are generated

1. Apply the selected energy optimization policy. EAR includes two power policies to be selected at runtime:
minimize time to solution and minimize energy to solution, if permitted by the system administrator. At this
point, EAR executes the power policy, using the projections computed in the previous phase, and selects the
optimal frequency for an application and its particular run. An additional policy, monitoring only can also be

Generated by Doxygen

592 Architecture

used, but in this case no changes to the running frequency will be made but only the computation and storage
of the application signature and metrics will be done. The short version of the names is used when submitting
jobs (min_energy, min_time, monitoring). Current policies already includes memory frequency selection but in
this case it is not based on models, it is a guided search. Check in your installation in the memory frequency
optimization is enabled by default. In case the application is MPI, the policies already classifies the processes
as balanced or unbalanced. In case they are unbalanced, a per-process CPU frequency is applied.

Some specific configurations are modified when jobs are executed sharing nodes with other jobs. For example the
memory frequency optiization is disabled. See section environment variables page for more information on how to
tune the EAR library optimization using environment variables.

7.4.2 Configuration

The Library uses the $ (EAR_ETC) /ear.conf file to be configured. Please visitthe EAR configuration
file page for more information about the options of EARL and other components.

EARL receives its specific settings through a shared memory regions initialized by EARD.

7.4.3 Usage

For information on how to run applications alongside with EARL read the User guide. Next section contains more
information regarding EAR's optimisation policies.

7.4.4 Policies

EAR offers three energy policies plugins: min_energy, min_time and monitoring. The last one is not
a power policy, is used just for application monitoring where CPU frequency is not modified (neither memory or
GPU frequency). For application analysis monitoringcan be used with specific CPU, memory and/or GPU
frequencies.

The energy policy is selected by setting the ——ear-policy=policy option when submitting a SLURM job.
A policy parameter, which is a particular value or threshold depending on the policy, can be set using the flag
——ear-policy-th=value. Its default value is defined in the configuration file, for more information check the
configuration page for more information.

Pluginmin_energy

The goal of this policy is to minimise the energy consumed with a limit to the performance degradation. This limit is
is setin the SLURM —-—-ear-policy-th option or the configuration file. The min_energy policy will select the
optimal frequency that minimizes energy enforcing (performance degradation <= parameter). When executing with
this policy, applications starts at default frequency(specified at ear.conf).

PerfDegr = (CurrTime - PrevTime) / (PrevTime)

Generated by Doxygen

7.4 The EAR Library 53

Pluginmin_time

The goal of this policy is to improve the execution time while guaranteeing a minimum ratio between performance
benefit and frequency increment that justifies the increased energy consumption from this frequency increment.
The policy uses the SLURM parameter option mentioned above as a minimum efficiency threshold.

Example: if ——ear-policy-th=0.75, EAR will prevent scaling to upper frequencies if the ratio between
performance gain and frequency gain do not improve at least 75% (PerfGain >= (FreqGain * threshold).

PerfGain=(PrevTime-CurrTime) /PrevTime
FregGain=(CurFreg-PrevFreq) /PrevFreq

When launched with min_t ime policy, applications start at a default frequency (defined at ear.conf). Check
the configuration page for more information.

Example: given a system with a nominal frequency of 2.3GHz and default P_STATE set to 3, an application exe-
cuted with min_time will start with frequency FAN\ [1\\\]=2.0Ghz (3 P_STATEs less than nominal). When
application metrics are computed, the library will compute performance projection for FA\\ [1+1\\\] and will
compute the performance_gain as shown in the Figure 1. If performance gain is greater or equal than threshold,
the policy will check with the next performance projection F\\\ [1+2\\\]. If the performance gain computed is
less than threshold, the policy will select the last frequency where the performance gain was enough, preventing

the waste of energy.

F=2.0GHz Fie1=22.1GHz Fia=2 2GHz Frominad IGHZ

perf_gain= (T{E}-TE VTR

freq_gain= (fie=fi)ff

il {perf_gan>==freq_gain“ear thrashold) chack wilk fsq
else stop and select f

Figure 1: min_time uses the threshold value as the minimum value for the performance gain between
FANNNTAINNNT and EANN [12+1N\A\NT.

7.4.5 EARAPI

EAR offers a user API for applications. The current EAR version only offers two functions, one to read the accumu-
lated energy and time and another to compute the difference between the two measurements.

* int ear_connect ()
* int ear_energy (unsigned long *energy_mj, unsigned long \\\xtime_ms)

* void ear_energy_diff (unsigned long ebegin, unsigned long eend, unsigned
long \\\#%ediff, unsigned long tbegin, unsigned long tend, unsigned long
*tdiff)

* int ear_set_cpufreq(cpu_set_t \\\#xmask,unsigned long cpufreq);
e int ear_set_gpufreqg(int gpu_id,unsigned long gpufreq)

* int ear_set_gpufreq_list (int num_gpus,unsigned long \\\xgpufreglist)

Generated by Doxygen

54 Architecture

e void ear_disconnect ()

EAR's header file and library can be found at $EAR_INSTALL_PATH/include/ear.h and $EAR_INSTALL +«
PATH/lib/libEAR_api.so respectively. The following example reports the energy, time, and average power during

that time for a simple loop including a sleep (5).
#define _GNU_SOURCE
#include <ear.h>

int main(int argc,char xargv([])
{
unsigned long e_mj=0,t_ms=0,e_mj_init,t_ms_init,e_mj_end,t_ms_end=0;
unsigned long ej,emj,ts,tms,os,oms;
unsigned long ej_e,emj_e,ts_e,tms_e,os_e,oms_e;
int 1=0;
struct tm xtstamp, *tstamp2, *tstamp3, rtstamp4;
char s[128],s2[128],s3([128],s4[128];

/* Connecting with ear =/

if (ear_connect () !=EAR_SUCCESS)

{
printf ("error connecting eard\n");
exit (1);

}

/+ Reading energy =*/
if (ear_energy (&e_mj_init, &t_ms_init) !=EAR_SUCCESS)
{
printf ("Error in ear_energy\n");
}
while (i<5)
{
sleep (5);

/* READING ENERGY =/

if (ear_energy(&e_mj_end, &t_ms_end) !=EAR_SUCCESS)

{
printf ("Error in ear_energy\n");

}

else

{
ts=t_ms_init/1000;
ts_e=t_ms_end/1000;
tstamp=localtime ((time_t =*)&ts);
strftime (s, sizeof(s), "%c", tstamp);

tstamp2=localtime ((time_t «)&ts_e);
strftime(s2, sizeof(s), "%c", tstamp2);
printf("Start time %s End time %s\n",s,s2);
ear_energy_diff (e_mj_init,e_mj_end, &e_mj, t_ms_init,t_ms_end, &t_ms);
printf ("Time consumed %lu (ms), energy consumed %$lu(mJ)
Avg power %1f(W)\n",t_ms,e_mj, (double)e_mj/ (double)t_ms);

e_mj_init=e_mj_end;
t_ms_init=t_ms_end;

}

i++;

}
ear_disconnect () ;

}

7.5 EAR Loader

The EAR Loader is the responsible for loading the EAR Library. It is a small and lightweight library loaded by the
EAR SLURM Plugin (through the LD_PRELOAD environment variable) that identifies the user application and loads
its corresponding EAR Library distribution.

The Loader detects the underlying application, identifying the MPI version (if used) and other minor details. With
this information, the loader opens the suitable EAR Library version.

As can be read in the EARL page, depending on the MPI vendor the MPI types can be different, preventing any
compatibility between distributions. For example, if the MPI distribution is OpenMPI, the EAR Loader will load the
EAR Library compiled with the OpenMPI includes.

You can read the installation guide for more information about compiling and installing different EARL versions.

Generated by Doxygen

7.6 EAR SLURM plugin 55

7.6 EAR SLURM plugin

EAR SLURM plugin allows to dynamically load and configure the EAR library for the SLURM jobs (and steps), if the
flag ——ear=on is set or if it is enabled by default. Additionally, it reports any jobs that start or end to the nodes'
EARDs for accounting and monitoring purposes.

7.6.1 Configuration

Visit the SLURM SPANK plugin section on the configuration page to set up properly the SLURM /etc/slurm/plugstack.conf
file.

You can find the complete list of EAR SLURM plugin accpeted parameters in the user guide.

Generated by Doxygen

56

Architecture

Generated by Doxygen

Chapter 8

EAR configuration

8.1 Configuration requirements

The following requirements must be met for EAR to work properly:

8.1.1 EAR paths
EAR folders EAR uses two paths for EAR configuration:

« EAR_TMP: tmp_ear_path must be a private folder per compute node. It must have read/write permissions for
normal users. Communication files are created here. It must be created by the admin. For instance: mkdir
/var/ear; chmod ugo +rwx /var/ear

+ EAR_ETC: etc_ear_path must be readable for normal users in all compute nodes. It can be a shared folder
in "GPFS" (simple to manage) or replicated data because it has very few data and it is modified at a very low
frequency (ear.conf and coefficients). Coefficients can be installed in a different path specified at configure
time with COEFFS flag. Both ear.conf and coefficients must be readable in all the nodes (compute and
"service" nodes).

ear.conf ear.conf is an ascii file setting default values and cluster descriptions. An ear.conf is automat-
ically generated based on a ear.conf.in template. However, the administrator must include installation details
such as hostname details for EAR services, ports, default values, and the list of nodes. For more details, check
EAR configuration file below.

8.1.2 DB creation and DB server

MySQL or PostgreSQL database: EAR saves data in a MySQL/PostgreSQL DB server. EAR DB can be created
using edb_create command provided (MySQL/PostgreSQL server must be running and root access to the DB
is needed).

8.1.3 EAR SLURM plug-in

EAR SLURM plug-in can be enabled by adding an additional line at the /etc/slurm/plugstack.conf file.
You can copy from the ear_etc_path/slurm/ear.plugstack.conf file).

Another way to enable it is to create the directory /etc/slurm/plugstack.conf.d and copy there the
ear_etc_path/slurm/ear.plugstack.conf file. Onthat case, the contentof /etc/slurm/plugstack.conf
mustbe include /etc/slurm/plugstack.conf.d/\\\x*.

Generated by Doxygen

58 EAR configuration

8.2 EAR configuration file

The ear.conf is a text file describing the EAR package behaviour in the cluster. It must be readable by all compute
nodes and by nodes where commands are executed. Two ear . conf templates are generated with default values
and will be installed as reference when executing make etc.install.

Usually the first word in the configuration file expresses the component related with the option. Lines starting with
are comments. A test for ear . conf file can be found in the path src/test/functionals/ear_conf. It
is recommended to test it since the ear . conf parser is very sensible to errors in the ear . conf syntax, spaces,
newlines, etc.

8.2.0.1 Database configuration

The IP of the node where the MariaDB (MySQL) or PostgreSQL server process is running. Current version uses
same names for both DB servers.

DBIp=172.30.2.101

Port in which the server accepts the connections.

DBPort=3306

MariaDB user that services will use. Needs INSERT/SELECT privileges. Used by the EARDBD.
DBUser=eardbd_user

Password for the previous user. If left blank or commented it will assume the user has no password.
DBPassw=eardbd_pass

Database user that the commands (eacct, ereport) will use. Only uses SELECT privileges.
DBCommandsUser=ear_commands

Password for the previous user. If left blank or commented it will assume the user has no password.
DBCommandsPassw=commandspass

Name of EAR’s database in the server.
DBDatabase=EAR

Maximum number of connections of the commands user to prevent server

saturation/malicious actuation. Applies to DBCommandsUser.

DBMaxConnections=20

The following specify the granularity of data reported to database.

Extended node information reported to database (added: temperature, avg_freq, DRAM and PCK energy in power
monitoring) .

DBReportNodeDetail=1

Extended signature hardware counters reported to database.

DBReportSigDetail=1

Set to 1 if you want Loop signatures to be reported to database.

DBReportLoops=1

8.2.1 EARD configuration

The port where the EARD will be listening.
NodeDaemonPort=50001

Frequency used by power monitoring service, in seconds.
NodeDaemonPowermonFreg=60

Maximum supported frequency (1 means nominal, no turbo).
NodeDaemonMaxPstate=1

Enable (1) or disable (0) the turbo frequency.
NodeDaemonTurbo=0

Enables the use of the database.

NodeUseDB=1

Inserts data to MySQL by sending that data to the EARDBD (1) or directly (0).

NodeUseEARDBD=1

’1’" means EAR is controlling frequencies at all times (targeted to production systems) and 0 means EAR
will not change the frequencies when users are not using EAR library (targeted to benchmarking
systems) .

NodeDaemonForceFrequencies=1

The verbosity level [0..4]

NodeDaemonVerbose=1

When set to 1, the output is saved at ’$EAR_TMP’ /eard.log (common configuration) as a log file. Otherwsie,
stderr is used.

NodeUseLog=1

Report plug-ins to be used by the EARD. Default= eardbd.so.
Add extra plug-ins by separating with colons (e.g., eardbd.so:pluginl.so).
EARDReportPlugins=eardbd.so

Generated by Doxygen

8.2 EAR configuration file 59

8.2.2 EARDBD configuration

Port where the EARDBD server is listening.
DBDaemonPortTCP=50002

Port where the EARDBD mirror is listening.
DBDaemonPortSecTCP=50003

Port used to synchronize the server and mirror.
DBDaemonSyncPort=50004

In seconds, interval of time of accumulating data to generate an energy aggregation.
DBDaemonAggregationTime=60

In seconds, time between inserts of the buffered data.

DBDaemonInsertionTime=30

Memory allocated per process. These allocations are used for buffering the data

sent to the database by EARD or other components. If there is a server and a

mirror in a node a double of that value will be allocated. It is expressed in MegaBytes.
DBDaemonMemorySize=120

When set to 1, EARDBD uses a ’$EAR_TMP’/eardbd.log file as a log file.
DBDaemonUseLog=1

Report plug-ins to be used by the EARDBD. Default= mysqgl.so.
Add extra plug-ins by separating with colons (e.g., mysgl.so:pluginl.so).
EARDBDReportPlugins=mysqgl.so

8.2.3 EARL configuration

Path where coefficients are installed, usually $EAR_ETC/ear/coeffs.
CoefficientsDir=/path/to/coeffs

NOTE: It is not recommended to change the following

attributes if you are not an expert user.

Number of levels used by DynAIS algorithm.

DynAISLevels=10

Windows size used by DynAIS, the higher the size the higher the overhead.

DynAISWindowSize=200

Maximum time (in seconds) that EAR will wait until a signature is computed. After this value, if no
signature is computed, EAR will go to periodic mode.

DynaisTimeout=15

Time in seconds to compute every application signature when the EAR goes to periodic mode.

LibraryPeriod=10

Number of MPI calls whether EAR must go to periodic mode or not.

CheckEARModeEvery=1000

EARL default report plug-ins

EARLReportPlug-ins=eard.so

8.2.4 EARGM configuration

You can skip this section if EARGM is not used in your installation.

Verbosity

EARGMVerbose=1

When set to 1, the output is saved in ’'TmpDir’/eargmd.log (common configuration) as a log file.
EARGMUseLog=1

EARGMPort=50000

Email address to report the warning level (and the action taken in automatic mode) .
EARGMMail=nomail

Period Tl and T2 are specified in seconds (ex. Tl must be less than T2, ex. 10min and 1 month).
EARGMEnergyPeriodT1=90

EARGMEnergyPeriodT2=259200

’-' are Joules, 'K’ KiloJoules and ’'M’ MegaJdoules.

EARGMEnergyUnits=K

Energy limit applies to EARGMPeriodT2.

EARGMEnergyLimit=550000

Use aggregated periodic metrics or periodic power metrics.

Aggregated metrics are only available when EARDBD is running.

EARGMEnergyUseAggregated=1

Two modes are supported ’O=manual’ and ’l=automatic’.

EARGMEnergyMode=0

Percentage of accumulated energy to start the warning DEFCON level L4, L3 and L2.
EARGMEnergyWarningsPerc=85, 90, 95

Tl "grace" periods between DEFCON before re-evaluate.

EARGMEnergyGracePeriods=3

Format for action is: command_name energy_Tl energy_T2 energy_limit T2 Tl wunits "

This action is automatically executed at each warning level (only once per grace periods) .
EARGMEnergyAction=no_action

Period at which the powercap thread is activated.
EARGMPowerPeriod=120
Powercap mode: 0 is monitoring, 1 is hard powercap, 2 is soft powercap.

Generated by Doxygen

60 EAR configuration

EARGMPowerCapMode=1

Admins can specify to automatically execute a command in

EARGMPowerCapSuspendAction when total_power >= EARGMPowerLimit+EARGMPowerCapResumeLimit/100
EARGMPowerCapSuspendLimit=90

Format for action is: command_name current_power current_limit total_idle_nodes total_idle_power
EARGMPowerCapSuspendAction=no_action

Admins can specify to automatically execute a command in EARGMPowerCapResumeAction

to undo EARGMPowerCapSuspendAction when total_power >= EARGMPowerLimit+«EARGMPowerCapResumeLimit/100.
Note that this will only be executed if a suspend action was executed previously.
EARGMPowerCapResumeLimit=40

Format for action is: command_name current_power current_limit total_idle_nodes total_idle_power
EARGMPowerCapResumeAction=no_action

EARGMs must be specified with a unique id, their node and the port that receives

remote connections. An EARGM can also act as meta-eargm if the meta field is filled,

and it will control the EARGMs whose ids are in said field. If two EARGMs are in the

same node, setting the EARGMID environment variable overrides the node field and

chooses the characteristics of the EARGM with the correspoding id.

Only one EARGM can currently control the energy caps, so setting the rest to 0 is recommended.

energy = 0 -> energy_cap disabled

power = 0 -> powercap disabled

power = N -> powercap budget for that EARGM (and the nodes it controls) is N

power = -1 -> powercap budget is calculated by adding up the powercap set to each of the nodes under its
control.

This is incompatible with nodes that have their powercap unlimited (powercap = 1)

EARGMId=1 energy=1800 power=600 node=nodel port=50100 meta=1,2,3
EARGMId=2 energy=0 power=500 node=nodel port=50101
EARGMId=3 energy=0 power=500 node=node2 port=50100

8.2.4.1 Common configuration

Default verbose level

Verbose=0

Path used for communication files, shared memory, etc. It must be PRIVATE per

compute node and with read/write permissions. $EAR_TMP

TmpDir=/tmp/ear

Path where coefficients and configuration are stored. It must be readable in all compute nodes. $EAR_ETC
EtcDir=/path/to/etc

InstDir=/path/to/inst

Network extension: To be used in case the DC has more than one
network and a special extension needs to be used for global commands
#NetworkExtension=

8.2.4.2 EAR Authorized users/groups/accounts

Authorized users that are allowed to change policies, thresholds and frequencies are supposed to be administrators.
A list of users, Linux groups, and/or SLURM accounts can be provided to allow normal users to perform that actions.
Only normal Authorized users can execute the learning phase.

AuthorizedUsers=userl,user2
AuthorizedAccounts=accl,acc2,acc3
AuthorizedGroups=xx,yy

8.2.4.3 Energy tags

Energy tags are pre-defined configurations for some applications (EAR Library is not loaded). This energy tags
accept a user ids, groups and SLURM accounts of users allowed to use that tag.

General energy tag

EnergyTag=cpu-intensive pstate=1

Energy tag with limited users

EnergyTag=memory-intensive pstate=4 users=userl,user2 groups=groupl,group2 accounts=accl,acc?2

8.2.5 Tags

Tags are used for architectural descriptions. Max. AVX frequencies are used in predictor models and are SKU-
specific. At least a default tag is mandatory to be included for a cluster to properly work.

Generated by Doxygen

8.2 EAR configuration file 61

The min_power, max_power and error_power are threshold values that determine if the metrics read might be
invalid, and a warning message to syslog will be reported if the values are outside of said thresholds. The error_<—
power field is a more extreme value that if a metric surpasses it, said metric will not be reported to the DataBase.

A special energy plug-in or energy model can be specified in a tag that will override the global values previously
defined in all nodes that have this tag associated with them.

Powercap set to 0 means powercap is disabled and cannot be enabled at runtime. Powercap set to 1 means no
limits on power consumption but a powercap can be set without stopping eard. List of accepted options:

* max_avx512 (GHz)

* max_avx2 (GHz)

* max_power (W)

* min_power (W)

« error_power (W)

* coeffs (filename)

» powercap (W)

» powercap_plugin (filename)

« energy_plugin (filename)

* gpu_powercap_plugin (filename)
* max_powercap (W)

* gpu_def_freq (GHz)

» cpu_max_pstate (0..max_pstate)
* imc_max_pstate (0..max_imc_pstate)
+ energy_model (filename)

« imc_max_freq (GHz)

* imc_min_freq (GHz)

« idle_governor (governor name)

« idle_pstate (0..max_pstate)

Tag=6148 default=yes max_avx512=2.2 max_avx2=2.6 max_power=500 powercap=1 max_powercap=600 gpu_def_ freg=1.4
energy_model=avx512_model.so energy_plugin=energy_nm.so powercap_plugin=dvfs.so
gpu_powercap_plugin=gpu.so min_power=50 error_power=600 coeffs=coeffs.default

Tag=6126 max_avx512=2.3 max_avx2=2.9 ceffs=coeffs.6l26.default max_power=600 error_power=700
idle_governor=ondemand

8.2.5.1 Power policies plug-ins

Policy names must be exactly file names for policies installeled in the system.
DefaultPowerPolicy=monitoring

Policy=monitoring Settings=0 DefaultFreqg=2.4 Privileged=0

Policy=min_time Settings=0.7 DefaultFreg=2.0 Privileged=0

Policy=min_energy Settings=0.05 DefaultFreg=2.4 Privileged=1

For homogeneous systems, default frequencies can be easily specified using fregs.
For heterogeneous systems it is preferred to use pstates.

Example with pstates (lower pstates corresponds with higher frequencies).
Pstate=1 is nominal and 0 is turbo

#Policy=monitoring Settings=0 DefaultPstate=1 Privileged=0

#Policy=min_time Settings=0.7 DefaultPstate=4 Privileged=0
#Policy=min_energy Settings=0.05 DefaultPstate=1 Privileged=1

Tags can be also used with policies for specific configurations
#Policy=monitoring Settings=0 DefaultFreg=2.6 Privileged=0 tag=6126

Generated by Doxygen

62 EAR configuration

8.2.6 Island description

This section is mandatory since it is used for cluster description. Normally nodes are grouped in islands that share
the same hardware characteristics as well as its database managers (EARDBDS). Each entry describes part of an
island, and every node must be in an island.

There are two kinds of database daemons. One called server and other one called mirror. Both perform the
metrics buffering process, but just one performs the insert. The mirror will do that insert in case the 'server' process
crashes or the node fails.

It is recommended for all islands to maintain server-mirror symmetry. For example, if the island 10 and I1 have the
server NO and the mirror N1, the next island would have to point the same NO and N1 or point to new ones N2 and
N3, not point to N1 as server and NO as mirror.

Multiple EARDBDs are supported in the same island, so more than one line per island is required, but the condition
of symmetry have to be met.

It is recommended that for an island the server and the mirror to be running in different nodes. However, the
EARDBD program could be both server and mirror at the same time. This means that the islands 10 and 1 could
have the NO server and the N2 mirror, and the islands 12 and I3 the N2 server and NO mirror, fulfilling the symmetry
requirements.

A tag can be specified that will apply to all the nodes in that line. If no tag is defined, the default one will be used as
hardware definition.

Finally, if an EARGM is being used to cap power, the EARGMID field is necessary in at least one line, and will
specify what EARGM controls the nodes declared in that line. If no EARGMID is found in a line, the first one found
will be used (ie, the previous line EARGMID).

In the following example the nodes are clustered in two different islands,
but the Island 1 have two types of EARDBDs configurations.

Island=0 DBIP=nodel081 DBSECIP=nodel082 Nodes=nodel0[01-80] EARGMID=1

These nodes are in island0 using different DB connections and with a different architecture

Island=0 DBIP=nodel084 DBSECIP=nodel085 Nodes=nodell[01-80] DBSECIP=nodel085 tag=6126

These nodes are in island0 and will use default values for DB connection (line 0 for island0) and default
tag

#These nodes will use the same EARGMID as the previous ones

Island=0 Nodes=nodel2[01-80]

Will use default tag

Island=1 DBIP=nodell81 DBSECIP=nodell82 Nodes=nodell[01-80]

Detailed island accepted values:

» nodename_list accepts the following formats:

— Nodes=nodel, node2, node3
— Nodes=node\\\ [1-3\\\]
— Nodes=node\\\[1, 2, 3\\\]
« Any combination of the two latter options will work, but if nodes have to be specified individually (the first
format) as of now they have to be specified in their own line. As an example:
— Valid formats:
» Island=1 Nodes=nodel, node2, node3
« Island=1 Nodes=node\\\ [1-3\\\1, node\\\ [4, 5\\\]
— Invalid formats:
» Island=1 Nodes=node\\\ [1, 2\\\], node3
* Island=1 Nodes=node\\\ [1-3\\\1], node4

Generated by Doxygen

8.3 SLURM SPANK plug-in configuration file 63

8.3 SLURM SPANK plug-in configuration file

SLURM loads the plug-in through a file called plugstack. conf, which is composed by a list of a plug-ins. In the
fle etc/slurm/ear.plugstack.conf, there is an example entry with the paths already set to the plug-in,
temporal and configuration paths.

Example:
required ear_install_path/lib/earplug.so prefix=ear_install_path sysconfdir=etc_ear_path
localstatedir=tmp_ear_path earlib_default=off

The argument prefix points to the EAR installation path and it is used to load the library using LD_PRELOAD
mechanism. Also the 1localstatedir is used to contact with the EARD, which by default points the path you set
duringthe . /configure using ——localstatedir or EAR_TMP arguments. Next to these fields, there is the
field earlib_default=off, which means that by default EARL is not loaded. Finally there are eargmd_host
and eargmd_port if you plan to connect with the EARGMD component (you can leave this empty).

Also, there are two additional arguments. The first one, nodes_allowed= followed by a comma separated list of
nodes, enables the plug-in only in that nodes. The second, nodes_excluded=, also followed by a comma sepa-
rated list of nodes, disables the plug-in only in nodes in the list. These are arguments for very specific configurations
that must be used with caution, if they are not used it is better that they are not written.

Example:
required ear_install_path/lib/earplug.so prefix=ear_install_path sysconfdir=etc_ear_path
localstatedir=tmp_ear_path earlib_default=off nodes_excluded=node0l, node02

8.3.1 MySQL/PostgreSQL

WARNING: If any EAR component is running in the same machine as the MySQL server some connection prob-
lems might occur. This will not happen with PostgreSQL. To solve those issues, input into MySQL's CLI client
the CREATE USER and GRANT PRIVILEGES queries from edb_create -o changing the portion “user_«
name’@"t o'user_name'@'localhost” so that EAR's users have access to the server from the local machine. There
are two ways to configure a database server for EAR's usage.

* Run edb_create -rlocatedin SEAR_INSTALLATION_PATH/sbin from a node with root access to
the MySQL server. This requires MySQL/PostgreSQL's section of ear.conf to be correctly written. For more
inforun edb_create -h.

» Manually create the database and users specified in ear.conf, as well as the required tables. If ear.conf has
been configured, running edb_create -o will output the queries that would be run with the program that
contain all that is needed for EAR to properly function.

For more information about how each ear.conf flag changes the database creation, see our [Database
section](EAR-Database). For further information about EAR's database management tools, see the
Commands section.

8.3.2 MSR Safe

MSR Safe is a kernel module that allows to read and write MSR without root permission. EAR opens MSR Safe
files if the ordinary MSR files fail. MSR Safe requires a configuration file to allow read and write registers. You can
find configuration files in et c/msr_safe for Intel Skylake and superior and AMD Zen and superior.

You can pass these configuration files to MSR Safe kernel mode like this:

cat intel63 > /dev/cpu/msr_allowlist

You can find more information inthe official repository

Generated by Doxygen

https://github.com/LLNL/msr-safe

64

EAR configuration

Generated by Doxygen

Chapter 9

Learning phase

This is a necessary phase prior to the normal EAR utilization and is a kind of hardware characterization of the nodes.
During the phase a matrix of coefficients are calculated and stored. These coefficients will be used to predict the

energy consumption and performance of each application.

Please, visit the learning phase wiki page to read the manual and the repository to getthe scripts and

the kernels.

9.1 Tools

The following table lists tools provided with EAR package to work with coefficients computed during the learning

phase.

Name

Description

Basic arguments

coeffs_compute

Computes the learning coefficients.

<save path> <min_freq> <nodename>

coeffs_default

Computes the default coefficients file.

coeffs_null

Creates a dummy configuration file to be
used by EARD.

<coeff_path>, <max_freq> <min_freq>

coeffs_show

Shows the computed coefficients file in text
format.

<file_path>

Use the argument ——he1p to expand the application information and list the admitted flags.

9.1.1 Examples

Compute the coefficients for the node node1001 in which the minimum frequency set during the learning phase

was 1900000 KHz

./coeffs_compute /etc/coeffs 1900000 nodel001

Generated by Doxygen

https://gitlab.bsc.es/ear_team/ear_learning/-/wikis/home
https://gitlab.bsc.es/ear_team/ear_learning

66

Learning phase

Generated by Doxygen

Chapter 10

EAR plug-ins

Some

of the core of EAR functionality can be dynamically loaded through a plug-in mechanism, making EAR more

extensible and dynamic than previous versions since it is not needed to reinstall the system to add, for instance, a
new policy or a new power model. Itis only needed to copy the file inthe SEAR_INSTALL_PATH/lib/plugins

folder and restart some components. The following table lists the current EAR functionalities designed with a plu-in
mechanism:
Plug-in Description

Power model Energy models used by energy policies.

Power policies Energy policies themselves.

Energy readings | Node energy readings.

Tracing Execution traces.

Report [Data reporting](Report).

Powercap Powercap management.
10.1 Considerations

Plug-in paths is set by default to SEAR_INSTALIL_PATH/lib/plugins.

Default power model library is specified in ear.conf (energy_model option). By default EAR includes a
basic_model.soand avx512_model. so plug-ins.

The node energy readings library is specified at ear.conf in the energy plugin option for each tag.
Several plug-ins are included: energy_nm. so (uses Intel NodeManager IPMI commands), energy+«
_rapl.so (uses a node energy estimation based on DRAM and PACKAGE energy provided by RAPL),
energy_sd650. so (uses the high frequency IPMI hardware included in Lenovo SD650 systems) and the
energy_inm_power_freeipmi.so, which uses the Intel Node Manager power reading commands
and requires the freeipmi library.

Power policies included in EAR are: monitoring.so, min_energy.so, min_time.so, min_«
energy_no_models.so and min_time_no_models.so. The list of policies installed is automati-
cally detected by the EAR plug-in. However, only policies included in ear . conf can be used.

The tracing is an optional functionality. It is included to provide additional information or to generate runtime
information.

Report plug-ins include different options to report EAR data from the different components. By default it is
included the eard, eardbd, csv_ts, mysql/psql (depending on the installation). Plug-ins to be loaded by default
can be specified on the ear . conf. For more information, check the [report section](Report)

Generated by Doxygen

68

EAR plug-ins

Note SLURM Plugin does not fit in this philosophy, it is a core component of EAR and can not be
replaced by any third party development.

Generated by Doxygen

Chapter 11

EAR Powercap

EAR provides powercap at different levels:

» Node powercap, where a node cannot exceed their given power consumption.

+ Cluster powercap, where the target power is for the entire cluster. It uses the node powercap to achieve its
target.

11.1 Node powercap

Node powercap is enforced by the EARD. The initial values for each node's powercap are set in the tags section
of the ear.conf (see Tags for more information), which include the power limit, the CPU/PKG powercap plugin and
the GPU powercap plugin (if needed). The power limit can be changed at runtime via econtrol or by an active
EARGM that has the node under its control.

The EARD enforces the powercap via its plugins, which in turn ensure that the domain they control (CPU/GPU)
does not exceed their power allocation.

The main goals of the node powercap is, first and foremost, to enforce the power limit with the secondary goal to
maximize performance while under said limit. The EARD will use its current power limit as a budget which it will, in
turn, distribute among the domains (controlled by the plugins) according to the current node's needs.

Node powercap can be applied without cluster powercap by defining only the node powercap in the EAR configura-
tion file.

11.2 Cluster powercap

Cluster powercap is managed by one or more EARGMs and enforced at a node level by the EARD. EARGMs have
an individual power limit set in their definition (see EARGM for more details) and the monitoring frequency. Each
EARGM will then ask the nodes under its control (as indicated in the nodes' definition for its power consumption and
distribute the budget accordingly. There are two main ways in which the cluster powercap might be enforced; soft
and hard cluster powercap.

Generated by Doxygen

70 EAR Powercap

11.2.1 Soft cluster powercap

This type of powercap is targeted to systems where exceeding the power limit is not a hardware constraint but a
rule that needs enforcement for a different reason. In this scenario, the compute nodes will run as if no limit was
applied until the total power consumption of the cluster reaches a percentage threshold (defined as the suspend
threshold in ear.conf), at which point the EARGM will send a power limit to all the nodes to prevent the global power
to go above the actual limit. Additionally, a script can be attached to the activation of the powercap in which the
admin can set whichever actions they feel appropriate. Once the cluster power goes below another percentage
threshold (defined as the resume threshold in ear.conf) the EARGM will send a message to all the nodes to go back
to unlimited power usage, as well as call the deactivation script set by the admin (if any is specified).

In terms of configuration, EARGMPowerCapMode must be set to 2 (soft powercap) and all nodes need to have
amax_powercap setin their tag. The value of max_powercap will be the power allocation of the nodes that
have that tag. If a node has a max_powercap value of 1, 0 or -1 they will ignore powercap messages from an
EARGM in soft cluster powercap mode.

11.2.2 Hard cluster powercap

Hard powercap is used when the system must not, under any circumstance, go above the power limit. This starts
by always having a set powercap in the compute nodes. The job of the EARGM is to periodically monitor the state
of the nodes, which will request more or less power depending on their current workload, and redistribute the power
according to the needs of all nodes.

11.3 Possible powercap values

To set the powercap for an entire cluster one can do it two ways, specific values and calculated. With specific values,
the powercap value in the EARGM definition must be a number > 0, and that will be the power budget for the
EARGM to distribute among the nodes it controls. On the other hand, if powercap=-1 the total power budget will
be calculated automatically as the sum of the powercap values set in the tags for the nodes it controls.

For an EARD, the valid values of powercap inits tag are 1 and N > 1. When set to 1, the daemon will run with
no power limit until it receives one. On the other hand, if the powercap is a higher number that will be used as the
power limit until a different value is set via econtrol or EARGM reallocations.

If either powercap or EARGMPowercapMode is set to 0 in the configuration file, the thread that controls the
power limits will not be started and the feature will be disabled.

If the initial powercap value for a node is set to 0 the powercap will be disabled for that node and it will
ignore any attempts to set it to a certain value. Set it to 1 if you ever want to set the powercap.

11.4 Example configurations

The following is an example for hard powercap on 4 nodes, with a starting powercap of 225W each and a total
power budget of 1000W. For clarity a few fields in the tags section have been skipped.

Wait period between power checks
EARGMPowerPeriod=120

Activate powercap

EARGMPowercapMode=1

Set up at least 1 EARGM

EARGMId=1 energy=XXX power=1000 node=nodel

Set up the nodes

Generated by Doxygen

11.4 Example configurations 4

Tag=tagl default=yes max_power=500 min_power=50 error_power=600 powercap=225 powercap_plugin=dvfs.so
gpu_powercap_plugin=gpu.so

Island=1 nodes=node[1-4] EARGMId=1

This example is similar to the previous one, but the global powercap is calculated by the EARGM as the sum of the
nodes. In this case, the nodes start with a default powercap of 250W and the total budget for the cluster remains
1000W.

Wait period between power checks
EARGMPowerPeriod=120

Activate powercap

EARGMPowercapMode=1

Set up at least 1 EARGM

EARGMId=1 energy=XXX power=-1 node=nodel

Set up the nodes
Tag=tagl default=yes max_power=500 min_power=50 error_power=600 powercap=250 powercap_plugin=dvfs.so
gpu_powercap_plugin=gpu.so

Island=1 nodes=node[1-4] EARGMId=1

The following is a soft powercap example with a power budget of 1000W. The nodes will start without a set powercap
but will be ready to activate it.

Wait period between power checks
EARGMPowerPeriod=120

Activate powercap as soft powercap
EARGMPowercapMode=2

Set up at least 1 EARGM

EARGMId=1 energy=XXX power=1000 node=nodel

Set up the nodes
Tag=tagl default=yes max_power=500 min_power=50 error_power=600 powercap=1 powercap_plugin=dvfs.so
gpu_powercap_plugin=gpu.so

Island=1 nodes=node[1-4] EARGMId=1

Finally, this example has ONLY node powercap, with the nodes having a limit of 250W. There will be no reallocation:
Wait period between power checks

EARGMPowerPeriod=120

Activate powercap

EARGMPowercapMode=1

Set up at least 1 EARGM

EARGMId=1 energy=XXX power=0 node=nodel

Set up the nodes
Tag=tagl default=yes max_power=500 min_power=50 error_power=600 powercap=250 powercap_plugin=dvfs.so
gpu_powercap_plugin=gpu.so

Island=1 nodes=node[1-4] EARGMId=1

This is the same, but deactivating the powercap by setting the mode to 0:
Wait period between power checks

EARGMPowerPeriod=120

Activate powercap

EARGMPowercapMode=0

Set up at least 1 EARGM

EARGMId=1 energy=XXX power=1000 node=nodel

Set up the nodes
Tag=tagl default=yes max_power=500 min_power=50 error_power=600 powercap=250 powercap_plugin=dvfs.so
gpu_powercap_plugin=gpu.so

Island=1 nodes=node[l1-4] EARGMId=1

This is an erroneous way to set it up, because the nodes' powercap capabilities will not be active:
Wait period between power checks

EARGMPowerPeriod=120

Activate powercap

EARGMPowercapMode=1

Set up at least 1 EARGM

EARGMId=1 energy=XXX power=1000 node=nodel

Set up the nodes
Tag=tagl default=yes max_power=500 min_power=50 error_power=600 powercap=0 powercap_plugin=dvfs.so

gpu_powercap_plugin=gpu.so

Island=1 nodes=node[1-4] EARGMId=1

Similarly, this following example does not work because the EARGM cannot calculate a valid powercap when the
nodes are set to unlimited:

Generated by Doxygen

72 EAR Powercap

Wait period between power checks
EARGMPowerPeriod=120

Activate powercap

EARGMPowercapMode=1

Set up at least 1 EARGM

EARGMId=1 energy=XXX power=-1 node=nodel

Set up the nodes
Tag=tagl default=yes max_power=500 min_power=50 error_power=600 powercap=1 powercap_plugin=dvfs.so

gpu_powercap_plugin=gpu.so

Island=1 nodes=node[1-4] EARGMId=1

11.5 Valid configurations

There are three special values for powercap configuration, 1 (unlimited, only for Tags/Node), 0 (disabled) and -1
(auto-configure).

Furthermore, there are three cluster powercap modes for EARGM: 0 (monitoring-only), 1 (hard cluster powercap)
and 2 (soft cluster powercap).

EARGM powercap EARGM powercap Tag powercap value Result
mode value
ANY 0 1 Cluster powercap dis-
abled, node powercap
unlimited (but can be set
with econtrol)
ANY 0 0 All powercap types dis-
abled, and cannot be
modified without restart-

ing

ANY 0 N Cluster powercap dis-
abled, node powercap
setto N

HARD -1 N Cluster powercap set to

the sum of the nodes'
powercap. Node power-
capsettoN

HARD N -1 Cluster powercap set to
N. Node powercap set to
N/number of nodes con-
trolled by EARGM

HARD N M Cluster powercap set to
N. Node powercap set to
N

SOFT N 1 Cluster powercap set to
N, node powercap un-
limited. If triggered,
node powercap will be set
to their max_powercap

value
SOFT N M *ERROR
HARD/SOFT N 0 ERROR
HARD/SOFT -1 -1 ERROR
HARD/SOFT 0 -1 *ERROR
HARD/SOFT 1 -1 *ERROR
HARD/SOFT -1 1 ERROR

Generated by Doxygen

11.5 Valid configurations 73

NOTE: When using soft cluster powercap, max_powercap value must be properly
set for the powercap to work.

Generated by Doxygen

74

EAR Powercap

Generated by Doxygen

Chapter 12

Report plugins

EAR includes several report plugins that are used to send data to various services:

12.1

12.1.

EARD/EARDBD: this plugins are used internally by EAR to send data between services, which in turn will
aggregate it and send it to the configured databases or other services.

MySQL/PostgreSQL: both plugins implement full EAR job and system accounting, using both the offi-
cial C bindings to send the data to the database. For more information on the database structure, see
the corresponding section

Prometheus: this plugin exposes system monitoring data in OpenMetrics format, which is fully compatible
with Prometheus. For information about how to compile and set it up, check the Prometheus section.

csv_ts: reports loop and application data to a .csv file. The structure is the same as eacct's CSV option
(see “eacct’) with an added column for the timestamp.

EXAMON: sends application accounting and system metrics to EXAMON. For more information, see its
dedicated section.

DCDB: sends application accounting and system metrics to DCDB. For more information, see its
dedicated section.

sysfs: exposes system monitoring data through the file system. For more information, see its
dedicated section.

Prometheus report plugin

1 Requirements

The Prometheus plugin has only one dependency, microhttpd. To be able to compile it make sure that it is in
your LD_LIBRARY_PATH.

12.1.2 Installation

Currently, to compile and install the prometheus plugin one has the run the following command.
make FEAT_DB_PROMETHEUS=1
make FEAT_DB_PROMETHEUS=1 install

With that, the plugin will be correctly placed in the usual folder.

Generated by Doxygen

https://www.gnu.org/software/libmicrohttpd/

76 Report plugins

12.1.3 Configuration

Due to the way in which Prometheus works, this plugin is designed to be used by the EAR Daemons, although the
EARDBD should not have many issues running it too.

To have it running in the daemons, simply add it to the corresponding line in the [configuration file](Configuration).
EARDReportPlugins=eardbd.so:prometheus.so

This will expose the metrics on each node on a small HTTP server. You can access them normally through a
browser at port 9011 (fixed for now).

In Prometheus, simply add the nodes you want to scrape in prometheus.yml| with the port 9011. Make sure that
the scrape interval is equal or shorter than the insertion time (NodeDaemonPowermonF req in ear.conf) since
metrics only stay in the page for that duration.

12.2 Examon

ExaMon (Exascale Monitoring) is a lightweight monitoring framework for supporting accurate monitoring of
power/energy/thermal and architectural parameters in distributed and large-scale high-performance computing in-
stallations.

12.2.1 Compilation and installation

To compile the EXAMON plugin you need a functioning EXAMON installation.

Modify the main Makefile and set FEAT_EXAMON=1. In src/report/Makefile, update EXAMON_BASE
with the path to the current EXAMON installation. Finally, set an examon.conf file somewhere on your instal-
lation, and modify src/report/examon. c (line 83, variable “charx conffile = "/hpc/opt/ear/etc/ear/examon.«
conf") to point to the new examon . conf file.

The file should look like this:

[MQTT]

brokerHost = hostip

brokerPort = 1883

topic = org/bsc

qgos = 0

data_topic_string = plugin/ear/chnl/data

cmd_topic_string = plugin/ear/chnl/cmd

Where host ip is the actual ip of the node.

Once that is set up, you can compile EAR normally and the plugin will be installed inthe 1ib/plugins/report
folder inside EAR's installation. To activate it, set it as one of the values in the EARDReportPlugins of ear.«

conf and restart the EARD.

The plugin is designed to be used locally in each node (EARD level) together with EXAMON's data broker.

Generated by Doxygen

12.3 DCDB 77

12.3 DCDB

The Data Center Data Base (DCDB) is a modular, continuous, and holistic monitoring framework targeted at HPC
environments.

This plugin implements the functions to report periodic metrics, report loops, and report events.

When the DCDB plugin is loaded the collected EAR data per report type are stored into a shared memory which
is accessed by DCDB ear sensor (report plugin implemented on the DCDB side) to collect the data and push them
into the database using MQTT messages.

12.3.1 Compilation and configuration
This plugin is automatically installed with the default EAR installation. To activate it, set it as one of the values in the
EARDReportPlugins of ear.conf and restart the EARD.

The plugin is designed to be used locally in each node (EARD level) with the DCDB collect agent.

12.4 Sysfs Report Plugin

This is a new report plugin to write EAR collected data into a file. Single file is generated per metric per joblD &
stepID per node per island per cluster. Only the last collected data metrices are stored into the files, means every
time the report runs it saves the current collected values by overwriting the pervious data.

12.4.1 Namespace Format

The below schema has been followed to create the metric files:
{/root_directory/cluster/island/nodename/avg/metricFile}
/root_directory/cluster/island/nodename/current/metricFile
/root_directory/cluster/island/jobs/jobID/stepID/nodename/avg/metricFile
/root_directory/cluster/island/jobs/jobID/stepID/nodename/current/metricFile

The root_directory is the default path where all the created metric files are generated.
The cluster, island and nodename will be replaced by the island number, cluster name, and node information.

metricFile will be replaced by the name of the metrics collected by EAR.

12.4.2 Metric File Naming Format

The naming format used to create the metric files is implementing the standard sysfs interface format. The current
commonly used schema of file naming is:

<type>_<component>_<metric-name>_<unit>

Numbering is used with some metric files if the component has more than one instance like FLOPS counters or
GPU data.

Examples of some generated metric files:

» dc_power_watt

* app_sig_pck_power_watt
* app_sig_mem_gbs

* app_sig_flops_6

* avg_imc_freq_KHz

Generated by Doxygen

78 Report plugins

12.4.3 Metrics reported

The following are the reported values for each type of metric recorded by ear:

* report_periodic_metrics

— Average values

= The frequency and temperature values have been calculated by summing the values of all periods
since the report loaded until the current period and divide it by the total number of periods.

= The energy value is accumulated value of all the periods since the report loaded until the current
one.

= The path to those metric files built as: /root_directory/cluster/island/nodename/avg/metricFile
— Current values

= Represent the current collected EAR metric per period.
= The path to those metric files built as: /root_directory/cluster/island/nodename/current/metricFile

* report_loops

— Current values

» Represent the current collected EAR metric per loop.

» The path to those metric files built as: /root_directory/cluster/island/jobs/joblD/step«
ID/nodename/current/metricFile

« report_applications

— Current values

= Represent the current collected EAR metric per application.

= The path to those metric files built as: /root_directory/cluster/island/jobs/joblD/step«
ID/nodename/avg/metricFile

* report_events

— Current values

= Represent the current collected EAR metric pere event.

= The path to those metric files built as: /root_directory/cluster/island/jobs/joblD/step«
ID/nodename/current/metricFile

" Note: If the cluster contains GPUs, both report_loops and report_applications will generate new schema
files will per GPU which contain all the collected data for each GPU with the paths below: o /root_«
directory/cluster/island/jobs/joblD/steplD/nodename/current/GPU-ID/metricFile o /root_directory/cluster/island/jobs/job«
ID/steplD/nodename/avg/GPU-ID/metricFile

Generated by Doxygen

Chapter 13

EAR Database

13.1 Tables

13.1.1 Application information

The following tables contain information directly related to applications executed on the system while EAR was
monitoring. The main key is the JOBID.STEPID combination generated by the scheduler.

« Jobs: job information (app_id, user_id, job_id, step_id, etc). One record per JOBID.STEPID is created in the
DB.

» Applications: this table's records serve as a link between Jobs and Signatures, providing an application
signature (from EARL) for each node of a job. One record per JOBID.STEPID.NODENAME is created in the
DB.

» Loops: similar to Applications, but stores a Signature for each application loop detected by EARL, instead of
one per each application. This table provides internal details of running applications and could significantly
increase the DB size.

+ Signatures: EARL computed signature and metrics. One record per JOBID.STEPID.NODENAME is created
in the DB when the application is executed with EARL.

» GPU_signatures: EARL computed GPU signatures. This information belongs to a loop or application signa-
ture. If the signature is from a node with 4 GPUs there will be 4 records.

» Power_signatures: Basic time and power metrics that can be obtained without EARL. Reported for all
applications. One record per JOBID.STEPID.NODENAME is created in the DB.

13.1.2 System monitoring

This tables contain periodic information gathered from the nodes. There is a single-node information table and an
aggregated one to increase the speed of queries to get cluster-wide information.

» Periodic_metrics: node metrics reported every N seconds (N is defined in ear . conf).

» Periodic_aggregations: sum of all Periodic_metrics in a time period to ease accounting in ereport com-
mand and EARGM, as well as reducing database size (Periodic_metrics of older periods where precision at
node level is not needed can be deleted and the aggregations can be used instead).

Generated by Doxygen

80 EAR Database

13.1.3 Events

+ Events: EAR events report. There are several types of events, depending on their source: EARL, EARD-
powercap, EARD-runtime and EARGM. For more information, see the table's fields and its header file
(src/common/types/event_type.h). For EARL-specific events, also see this.

13.1.4 EARGM reports

» Global_energy: contains reports of cluster-wide energy accounting set by EARGM using the parameters in
ear.conf. One record every T1 period (defined at ear.conf) is reported.

13.1.5 Learning phase

This tables are the same as their non-learning counterparts, but are specifically used to store the applications
executed during a learning phase.
+ Learning_applications: same as Applications, restricted to learning phase applications.
» Learning_jobs: same as Jobs, restricted to learning phase jobs.
» Learning_signatures: same as Signatures, restricted to learning phase job metrics.
NOTE In order to have GPU_signatures table created and Periodic_metrics containing GPU data, the
databasease must be created (if you follow the edb_create approach, see the section down be-

low) with GPUs enabled at the compilation time. See how to update from previous versions if you are
updating EAR from a release not having GPU metrics.

13.2 Creation and maintenance

To create the database a command (edb_create) is provided by EAR, which can either create the database
directly or provide the queries for the database creation so the administrator can use them or modify them at their
discretion (any changes may alter the correct function of EAR's accounting).

Since a lot of data is reported by EAR to the database, EAR provides two commands to remove old data and free
up space. These are intended to be used with a cron job or a similar tool, but they can also be run manually
without any issues. The two tools are edb_clean_pm to remove periodic data accounting from nodes, and
edb_clean_apps to remove all the data related to old jobs.

For more information on this commands, check the commands' page on the wiki.

13.3 Database creation and ear.conf

When running edb_create some tables might not be created, or may have some quirks, depending on some
ear.conf settings. The settings and alterations are as follows:

* DBReportNodeDetail: if setto 1, edb_create will create two additional columns in the Periodic_«
metrics table for Temperature (in Celsius) and Frequency (in Hz) accounting.

+ DBReportSigDetail: if set to 1, Signatures will have additional fields for cycles, instructions, and
FLOPS1-8 counters (number of instruction by type).

*« DBMaxConnections: this will restrict the number of maximum simultaneous commands connections.

If any of the settings is set to 0, the table will have fewer details but the table's records will be smaller in stored size.

Any table with missing columns can be later altered by the admin to include said columns. For a full detail of each
table's columns, run edb_create -o with the desired ear.conf settings.

Generated by Doxygen

13.4 Information reported and ear.conf

13.4

There are various settings in ear . conf that restrict data reported to the database and some errors might occur if

the database configuration is different from EARDB's.

*» DBReportNodeDetail: if set to 1, node managers will report temperature, average frequency, DRAM
and PCK energy to the database manager, which will try to insert it to Periodic_metrics. |f Periodic_metrics
does not have the columns for both metrics, an error will occur and nothing will be inserted. To solve the
error, set ReportNodeDetail to 0 or manually update Periodic_metrics in order to have the necessary

columns.

* DBReportSigDetail: similarly to ReportNodeDetail, an error will occur if the configuration differs

from the one used when creating the database.

* DBReportLoops :

If Signatures and/or Periodic_metrics have additional columns but their respective settings are set to 0, a NULL will
be set in those additional columns, which will make those rows smaller in size (but bigger than if the columns did

not exist).

Additionally, if EAR was compiled in a system with GPUs (or with the GPU flag manually enabled), another table to

store GPU data will be created.

Information reported and ear.conf

if set to 1, EARL detected application loops will be reported to the database, each with
its corresponding Signature. Set to 0 to disable this feature. Regardless of the setting, no error should occur.

Power_signatures
Jobs Applications. id uint Periodic_aggregations
+id uint 1 +job_id uint 1 1["pC_pover float K= —uint
*step i uint < step i uint P*DRAM power float wstart__tme %nt
*user_id varchar(128) *node_id varchar(64)|1 *PCK_power float uenditlme 1'j't
+app id varchar(128) esignature id ubigint *EDP float obC_energy uint
*start_time int Spower_signature id uint *max_DC_power float eardbd host varchar(64)
*end_time int *min_DC_power float
estart mpi time int -time float
*end_mpi_time int *avg T uint
*policy varchar(256) ~dev_f uint Global energy
*threshold Tloat °energy_percent Tloat
*procs uint °warning level uint
*job type usmallint Signatures +time timestamp
°def f uint +id ubigint °inc_th float
“user_acc varchar(256) 0 °DC_power float °p state int
ouser_group varchar(256) —{°DRAM_power float °GlobEnergyConsumedTl uint
°e tag varchar(256) npo(_ﬁcwer float °GlobEnergyConsumedT2 uint
A oEDP float °GlobEnergyLimit uint
n Loops oGBS float °GlobEnergyPeriodTl wuint
n *job_id uint 10..][T0 Mes float °GlobEnergyPeriodT2 uint
Periodic metrics 'step_?d uint PeTPT float °GlobEnergyPolicy varchar(64)
vid ubigint *:node¥1d vgrinar(ﬁd) :CPI Tloat
*start_time int .:ﬁz :i:‘t niﬂ_‘lops ;}na}[
. " 5 ime oa
.s:d;;:::y t::ﬁ *level uint cperc_MPL float GPU signatures
'noae_id varchar (64} ﬂt?tal_lter?tmns uJ.r_n_ DFLOPS[I-Q] [ul;u;]m‘t] tid ubigint
-job 1d uint °signature id ubigint “instructions ubigint 1 Q'GFU_puwer Tloat
. - 5 ccycles ubigint P|*GPU_Treq uint
step_id uint -
Daugp; int cavg T uint *GPU mem_freq uint
Dtsm;_: int :avg_imc_f u%nt [l'GFU_util) uj:.nt
°DRAM energy int ndgu_f o ulr_lt_ P1°GPU_mem util wint
oPCK_energy int mJ.n?GFLlis}gi}d ub}g!nt
°GPU_energy int “max_ GPU sig id ubigint
fearning Jobs | Learning signatures |
pld____uint vid ubigint |1
step id uint °DC_power float
'userfld varchar(128) °DRAM power float
*app_1id varchar(128) v : P °PCK_power float
ona tine . int TR TE——TTY oo e Events
- Job dd ____ MInt °GBS float i i
*start_mpi_time int ‘1 n|*step_id uint L °T0 MBS float :i‘d T l,ur_t]t
*end mpi time int < node_id varchar(64) oTPT float . imestamp 1n
*policy varchar(256) esignature_id ubigint oCPI float .euenptype ”,‘T
*threshold float °power signature id uint °Gflops float J‘"’—“,‘ ”%"t
+procs uint ots p oot *step_id uint
ime oa B i
*job_type usmallint cperc MPI float valuer uint
onet T it perc_| at °node_id varchar(64)
N — °FLOPS[1-8] [ubigint]
r)user_acc varchar(256) cinstructions ubigint
user_group varchar(256) ccycles ubigint
°e_tal varchar(256) avg T uint
°avg_imc_T uint
cdev_f uint
omin GPU sig id ubigint
°max_GPU_sig_id ubigint

NOTE the nomenclature is modified from MySQL's type. Any type starting with u is unsigned. bigint
corresponds to an integer of 64 bits, int is 32 and smallint is 16.

For a detailed description of each field in any of the database's tables, see [here](EAR-database-table-
descriptions).

Generated by Doxygen

82 EAR Database

13.5 Updating from previous versions

13.5.1 From EAR 4.2t04.3

To add support for workflows, a new field was added to several tables to allow their accounting:
ALTER TABLE Jobs ADD COLUMN local_id INT UNSIGNED NOT NULL AFTER step_id;

ALTER TABLE Jobs DROP PRIMARY KEY, ADD PRIMARY KEY (job_id, step_id, local_id);

ALTER TABLE Applications ADD COLUMN local_id INT UNSIGNED NOT NULL AFTER step_id;

ALTER TABLE Applications DROP PRIMARY KEY, ADD PRIMARY KEY (job_id, step_id, local_id);
ALTER TABLE Loops ADD COLUMN local_id INT UNSIGNED NOT NULL AFTER step_id;

Three new fields corresponding to L1, L2 and L3 cache misses have been added to the signatures.

NOTE This change only applies to the databases that have been created with the extended application
signature (i.e. they have the FLOPS, instructions and cycles counters in their signatures).

ALTER TABLE Signatures

ADD COLUMN L1l_misses BIGINT UNSIGNED AFTER perc_MPI,
ADD COLUMN L2_misses BIGINT UNSIGNED AFTER L1_misses,
ADD COLUMN L3_misses BIGINT UNSIGNED AFTER L2_misses;
ALTER TABLE Learning_signatures

ADD COLUMN L1l_misses BIGINT UNSIGNED AFTER perc_MPI,
ADD COLUMN L2_misses BIGINT UNSIGNED AFTER Ll1_misses,
ADD COLUMN L3_misses BIGINT UNSIGNED AFTER L2_misses;

13.5.2 From EAR 4.1t0 4.2

A field in the Events table had its name changed to be more generic. One can do that with EITHER of the following

commands:
ALTER TABLE Events RENAME COLUMN freq TO value;
ALTER TABLE Events CHANGE freqg value INT unsigned;

Furthermore, some errors on big servers have been found due to the ids of a few fields being too small. To correct

this, please run the following commands:

ALTER TABLE Learning_signatures MODIFY COLUMN id BIGINT unsigned AUTO_INCREMENT;
ALTER TABLE Signatures MODIFY COLUMN id BIGINT unsigned AUTO_INCREMENT;

ALTER TABLE Applications MODIFY COLUMN signature_id BIGINT unsigned;

ALTER TABLE Loops MODIFY COLUMN signature_id BIGINT unsigned;

If GPUs are being used, also run:

ALTER TABLE GPU_signatures MODIFY COLUMN id BIGINT unsigned AUTO_INCREMENT;
ALTER TABLE Learning_signatures MODIFY COLUMN min_gpu_sig_id BIGINT unsigned;
ALTER TABLE Learning_signatures MODIFY COLUMN max_gpu_sig_id BIGINT unsigned;
ALTER TABLE Signatures MODIFY COLUMN min_gpu_sig_id BIGINT unsigned;

ALTER TABLE Signatures MODIFY COLUMN max_gpu_sig_id BIGINT unsigned;

13.5.3 From EAR 3.4t0 4.0

Several fields have to be added in this update. To do so, run the following commands to the database's CLI client:
ALTER TABLE Signatures ADD COLUMN avg_imc_f INT unsigned AFTER avg_f;

ALTER TABLE Signatures ADD COLUMN perc_MPI FLOAT AFTER time;

ALTER TABLE Signatures ADD COLUMN IO_MBS FLOAT AFTER GBS;

ALTER TABLE Learning_signatures ADD COLUMN avg_imc_f INT unsigned AFTER avg_f;
ALTER TABLE Learning_signatures ADD COLUMN perc_MPI FLOAT AFTER time;
ALTER TABLE Learning_signatures ADD COLUMN IO_MBS FLOAT AFTER GBS;

Generated by Doxygen

13.6 Database tables description 83

13.5.4 From EAR 3.3t0 3.4

If no GPUs were used and they will not be used there are no changes necessary.

If GPUs were being used, type the following commands to the database's CLI client:

ALTER TABLE Signatures ADD COLUMN min_GPU_sig_id BIGINT unsigned, ADD COLUMN max_GPU_sig_id BIGINT unsigned;

ALTER TABLE Learning_signatures ADD COLUMN min_GPU_sig_id BIGINT unsigned, ADD COLUMN max_GPU_sig_id BIGINT
unsigned;

CREATE TABLE IF NOT EXISTS GPU_signatures (id BIGINT unsigned NOT NULL AUTO_INCREMENT, GPU_power FLOAT NOT

NULL, GPU_freq INT unsigned NOT NULL, GPU_mem_freq INT unsigned NOT NULL, GPU_util INT unsigned NOT
NULL, GPU_mem_util INT unsigned NOT NULL, PRIMARY KEY (id));

If no GPUs were being used but now are present, use the previous query plus the following one:
ALTER TABLE Periodic_metrics ADD COLUMN GPU_energy INT;

13.6 Database tables description

EAR's database contains several tables, as described here. Each table contains different information, as described
here:

13.6.1 Jobs

« id: Job id given by the scheduler (for example SLURM_JOBID).

step_id: step id given by the scheduler.
« user_id: the linux username that executed the job.

» app_id: the application/job name as given by the scheduler (not necessarily the executable’s name)

start_time: timestamp of the job’s[.step] start
+ end_time: timestamp of the job’s[.step] end

« start_mpi_time: timestamp of the beginning of application region managed by the EARL. Named MPI for
historical reasons. For MPI applications timestamp of the MPI_Init execution.

« end_mpi_time: timestamp of the end of application region managed by the EARL. Named MPI for historical
reasons. For MPI applications timestamp of the MPI_Finalize execution.

policy: EAR policy name in action for the job. Can be “No Policy” if the job runs without EAR.

threshold: threshold used by the policy to configure it's behavior. For example, the maximum performance
penalty in min_energy.

* job_type:

 def_f: default CPU frequency requested by the user/job manager.

user_acc: the account the user_id belongs to.
* user_group: the linux group name the user_id belongs to.

+ e_tag: energy tag. The user can specify an energy tag to apply pre-defined CPU frequency settings.

Generated by Doxygen

84

EAR Database

13.6.2 Applications

job_id: job id given by the scheduler. Used as a foreign key for Jobs.
step_id: step id given by the scheduler. Used as a foreign key for Jobs.

node_id: the nodename in which the application ran. The names of the nodes are trimmed at any “.”, i.e.,
node1.at.cluster becomes nodef.

signature_id: the id (index) of the computed signature for the job on this node. If the job runs without EAR
library the field will be NULL.

power_signature_id: the id (index) of the power signature for the job on this node.

13.6.3 Signatures

All the metrics in this table refer to the period of time where the Signature is computed. Typically is 10 sec. Signa-
tures are only reported when the application uses the EAR library.

id: unique id generated by the database engine to be used in JOIN queries.
DC_power: average DC node power (in Watts)

DRAM_power: average DRAM power, including the 2 sockets (in Watts)
PCK_power: Average CPU power, including the 2 sockets (in Watts)

EDP: Energy Delay Product computed as (time x time x DC_power)

GBS: Main memory bandwidth (GB/sec)

TPI: Main memory transactions per instruction

CPI: Cycles per instructions.

Gflops: Giga Floating point operations, per second, generated by the application processes in the node.
GFlops/sec.

time: total execution time (in seconds)

perc_MPI: average percentage of MPI time vs computational time in the node. Includes all the application
processes in the node.

L1_misses: L1 cache misses counter.

L2_misses: L2 cache misses counter.

L3 _misses: L3 cache misses counter.

FLOPS1: Floating point operations Single precision 64 bits consumed by application processes in the node.
FLOPSZ2: Floating point operations Single precision 128 bits consumed by application processes in the node.
FLOPSS3 Floating point operations Single precision 256 bits consumed by application processes in the node.
FLOPSA4: Floating point operations Single precision 512 bits consumed by application processes in the node.
FLOPSS5: Floating point operations Double precision 64 bits consumed by application processes in the node.
FLOPS6: Floating point operations Double precision 128 bits consumed by application processes in the node.
FLOPS?7: Floating point operations Double precision 256 bits consumed by application processes in the node.

FLOPSS: Floating point operations Double precision 512 bits consumed by application processes in the node.

Generated by Doxygen

13.6 Database tables description 85

« instructions: total instructions executed by the application processes in the node

+ cycles: total cycles consumed by the application processes in the node

» avg_f: average CPU frequency (includes all the cores used by the application on the node) in KHz
» avg_imc_f: average memory frequency (includes the two sockets) in KHz

« def_f: default CPU frequency used at the beginning of the application in KHz

» min_GPU_sig_id: start of the range containing the GPU_signature’s ids, used for JOIN queries. If an appli-
cation doesn’t have GPUs it will be NULL

» max_GPU_sig_id: end of the range containing the GPU_signature’s ids, used for JOIN queries. If an appli-
cation doesn’t have GPUs it will be NULL

1. Each signature corresponds to either a Loop or an Application. When it's an application it is the
average values for its entire runtime. For a loop, the values are the average of only the period comprised
by the loop’s start and end.

1. Signatures are only reported when an application is running with EARL.

2. The GPU signature values are inclusive, i.e. if a signature has a min_id = 1 and max_id = 3, the
GPU_signatures with ids 1,2,3 will be from this application.

13.6.4 Power_signatures

Power signatures are measured and reported by the EARD and reported for all the jobs/steps/nodes. It's indepen-
dent of the EAR library utilization.

« id: unique id generated by the database engine to be used in JOIN queries.

» DC_power: average DC node power (in Watts)

+ DRAM_power: average DRAM power, including the 2 sockets (in Watts)

* PCK_power: Average CPU power, including the 2 sockets (in Watts)

» EDP: Energy Delay Product computed as (time x time x DC_power)

» max_DC_power: maximum DC node power registered by the EAR daemon during the application’s execution
(in Watts)

* min_DC_power: minimum DC node power registered by the EAR daemon during the application’s execution
(in Watts)

« time: total execution time (in seconds)
» avg_f: average CPU frequency (includes all the cores of the node) in KHz

« def_f: default CPU frequency used at the beginning of the application in KHz

13.6.5 GPU_signatures

« id: unique id generated by the database engine to be used in JOIN queries.

* GPU_power: average GPU power for a single GPU (in Watts)

» GPU_freq: average GPU frequency for a single GPU (in KHz)

+ GPU_mem_freq: average GPU memory frequency for a single GPU (in KHz)

» GPU_util: average GPU utilisation for the reported period for a single GPU. (percentage)

* GPU_mem_util: average GPU memory utilisation for the reported period for a single GPU.(percentage)

If an application has more than 1 GPU there will be a signature for each of them.

Generated by Doxygen

86

EAR Database

13.6.6 Loops

Loops are only reported when the EAR library is used.

event: loop type identificatory. It’s for internal use of the EAR library. Together with size and level is used
internally.

size: loop’s size as computed by DynAlIS.

level: loop’s level of depth (indicative of loops inside of loops)

job_id: job id given by the job manager. Used as a foreign key for Jobs.
step_id: step id given by the job manager. Used as a foreign key for Jobs.

node_id: the nodema,e in which the application ran. The names of the nodes are trimmed at any “.”, i.e.,
node1.at.cluster becomes node1.

total_iterations: timestamp at which the loop signature has been reported. It is named total_iterations for
historical reasons.

signature_id: the id of the computed signature for the job on this node.

1. the combination even-size-level forms the Primary Key for the table loops.

1. Loops will always have a signature because they are only reported when EAR is used

2. When a loop is inserted, the corresponding Job is probably not in the database yet, because Jobs
are inserted only when an application finishes. JOIN queries with Jobs can only be done once an
application has finished (only the current step id needs to finish, not the entire job).

13.6.7 Events

id: unique id generated by the database engine to use as primary key.

timestamp: registered timestamp of when the event happened (NOT when it was inserted)
event_type: a numerical id for the type of EAR event

job_id: job id given by the job manager. Used as a foreign key for Jobs.

step_id: step id given by the job manager. Used as a foreign key for Jobs.

value: value for the event. The units and semantic depend on the type of event. node_id: the node in which
the application ran. The names of the nodes are trimmed at any “.”, i.e., node1.at.cluster becomes node1.

The origins of an event are indicated by its cardinality:

1. EARL events’ type is always < 100

2. EARD init events’ type is always >=100 <=200

3. EARD runtime events’ type is always >=300 and <=400
4. EARD powercap events’ type is always >=500 and <=600
5. EARGM events’ type is always >=600 and <=700

Certain events do not require a value, so it is set to 0 by default on those cases.

Generated by Doxygen

13.6 Database tables description 87

13.6.8 Global_energy

This table is used by the EARGM.

energy_percent: percentage of consumed energy from the current budget.

warning_level: current level of closeness to the current energy budget. Higher level means closer to the
current budget.

time: timestamp of the energy event

inc_th: threshold increment sent to the EARDs to be applied to policies
p_state: p_state variation sent to the EARDs

GlobEnergyConsumedT1: current energy consumed within the last period T1
GlobEnergyConsumedT2: current energy consumed within the last period T2
GlobEnergyLimit: current energy budget/limit

GlobEnergyPeriodT1: duration of the current period T1

GlobEnergyPeriodT2: duration of the current period T2

GlobEnergyPolicy: current energy policy used by the EARGM

The warning level also indicates which inc_th and p_states are being sent to the EARDs

13.6.9 Periodic_metrics

id: unique id generated by the database engine to use as primary key.
start_time: timestamp of the start of the period

end_time: timestamp of the end of the period

DC_energy: total energy consumed by the node during the period in Joules

node_id: the nodename in which the application period was registered. The names of the nodes are trimmed
at any “.”, i.e., node1.at.cluster becomes node1.

job_id: job id given by the scheduler. Used as a foreign key for Jobs. If no job is running in the node during
the period it will be 0.

step_id: step id given by the scheduler. Used as a foreign key for Jobs. If no job is running in the node during
the period it will be 0.

avg_f: average CPU frequency (includes all the cores of the node) in Khz during the period.

temp: average temperature reported by the node during the period.

DRAM_energy: total energy consumed by the DRAM (includes 2 sockets) during the period, in Joules
PCK_energy: total energy consumed by the CPU (includes 2 sockets) during the period, in Joules

GPU_energy: total energy consumed by the GPU (includes all GPUs) during the period, in Joules

Generated by Doxygen

88 EAR Database

13.6.10 Periodic_aggregations

+ id: unique id generated by the database engine to use as primary key
« start_time: timestamp of the start of the period

+ end_time: timestamp of the end of the period

» DC_energy: accumulated energy consumed by the period

 eardbd_host: hostname of the eardbd reporting the data to database. The hostnames of the nodes are
trimmed at any “.”, i.e., service1.at.cluster becomes service1.

Generated by Doxygen

Chapter 14

Supported systems

14.1 CPU Models

« Intel Haswell/Skylake/IceLake monitoring and optimization.

+ AMD EPYC Rome/Milan monitoring and optimization.

14.2 GPU models

« NVIDIA: Node and application monitoring.

14.3 Schedulers

+ EAR offers a SLURM SPANK plugin to be transparently used when using SLURM workload manager. This
plug-in allows to be integrated as part of the SLURM submission options. See the user guide.

+ Using the EARD api new_job/+xend_job*x functions EAR can be also be transparently used with other
schedulers such as LSF or PBS through the prolog/epilog mechanism.

Generated by Doxygen

90

Supported systems

Generated by Doxygen

Chapter 15

Changelog

15.1 EARA4.3

» MPI stats collection now is guided by sampling to minimize the overhead.
+ EARL-EARD communication optimized.

» EARL: Periodic actions optimization.

» EARL: Reduce time consumption of loop signature computation.

« erun: Provide support for multiple batch schedulers.

+ eardbd: Verbosity quality improved.

+ Improved metrics computation in AMD Zen2/Zen3.

» Improved robustness in metrics computation to support hardware failures.

15.2 EARA4.2

+ Improved support for node sharing : save/restore configurations

« AMD(Zen3) CPUs

* Intel(r) SST support ondemand

» Improved Phases classification

» GPU idle optimization in all the application phases

« MPI load balance for energy optimization integrated on EAR policies
+ On demand COUNTDOWN support for MPI calls energy optimization
» Energy savings estimates reported to the DB (available with eacct)

+ Application phases reported to the DB (available with eacct)

» MPI statistics reports: CSV file with MPI statistics

* New Intel Node Manager powercap node plugin

 Improvements in the Meta-EARGM and node powercap

Generated by Doxygen

92

Changelog

Improvements in the Soft cluster powercap

New report plugins for non-relational DB: EXAMON, Cassandra, DCDB
Improvements in the ear.conf parsing

Improved metrics and management API

Changes in the environment variables have been done for homogeneity

15.3 EARA4.1.1

Select replaced by poll to support bigger nodes

Minor changes in edb_create and FP exceptions fixes

154 EARA4.1

Meta EARGM.

Support for N jobs in a node.

CPU power models for N jobs.

Python apps loaded automatically.

Support for MPI-Python through environment variable.

Report plug-ins in EARL, EARD and EARDBD.

PostgreSQL support.

Soft cluster powercap.

New AMD virtual P-states support using max frequency and different P-states.
New RPC system in EARL-EARD communication (including locks).
Partial support for different schedulers (PBS).

New task messages between EARPIlug and EARD.

New DCMI and INM-Freeipmi based energy plug-ins.

IceLake support.

Likwid support for IceLake memory bandwidth computation.
msr_safe

HEROES plug-in.

Generated by Doxygen

15.5 EAR 4.0

93

15.5 EARA4.0

AMD virtual p-states support and DF frequency management included
AMD optimization based on min_energy and min_time
GPU optimization in low GPU utilization phases

Application phases I0/MPI/Computation detection included

Node powercap and cluster powercap implemented: Intel CPU and NVIDIA GPUS tested. Meta EAR-GM not

released

IO, Percentage of MPI and Uncore frequency reported to DB and included in eacct

econtrol extensions for EAR health-check

15.6 EAR 3.4

Automatic loading of EAR library for MPI applications (already in 3.3), OpenMP, MKL and CUDA applications.
Programming model detection is based on dynamic symbols so it could not work if symbols are statically

included.

AMD monitoring support.

TAGS support included in policies.

Request dynamic in eard_rapi.

GPU monitoring support in EAR library for NVIDIA devices.
Node powercap and cluster power cap under development.

papi dependency removed.

15.7 EAR3.3

eacct loop signature reported.

EAR loader included.

GPU support migrated to nvml API.

GPU support in configure.

TAGS supported in ear.conf.

Heterogeneous clusters specification supported.
EARGM energy capping management improved.

Internal messaging protocol improved.

Average CPU frequency and Average IMC frequency computation improved.

15.8 EAR3.2

GPU monitoring based on nvidia-smi command.
GPU power reported to the DB using NVIDIA commands.
Postgresql support.

freeipmi dependence removed.

Generated by Doxygen

94

Changelog

Generated by Doxygen

Chapter 16

FAQs

16.1 EAR general questions

Q: What is EAR?

A: EAR is a system software for energy and power optimization, accounting and management. EAR components
interact with each other to perform system monitoring, job accounting and energy optimisation on HPC systems.

The main goals of EAR are to provide energy optimization and monitoring about power consumption about the
system or jobs.

Q: Must all EAR components be available to get EAR working?
A: No. Each set of components was designed to provide different services.

The minimal functionality is the system power monitoring, provided by the EAR Daemon (EARD). In order to get
the information collected by the EARD, another service is needed to store such, i.e., the EAR Database Daemon
(EARDBD).

In addition, EARD can offer job accounting if EAR is integrated with the system batch scheduler (e.g., SLURM).
Current release has support for SLURM, PBSPro, OpenPBS and OAR. These integrations can load the EAR Library
(EARL) when an application is starting in order to get performance metrics and apply energy optimisation policies.

Finally, the EAR Global Manager Daemon (EARGMD) is a cluster wide component offering cluster energy mon-
itoring and capping. lts main goal is to provide features to apply power capping policies for systems with power
consumption restrictions.

Q: Which programming models does EARL support?

A: EARL can be loaded automatically on pure MPI, MPI+OpenMP, OpenMP, MKL, CUDA, and python applications.
For other programming models it must be loaded on demand.

Depending on the programming model, EARL offers different features. Also, the approach to load it may differ
depending on which kind of application is launched. See the user guide to read more detailed information on how
to run jobs with the EAR.

Q: Is EAR providing per-process metrics?

A: The current version reports per jobid/stepid/nodeid metrics, that is, metrics reported are or the accumulated or
the averages of the metrics for all the processes of the application in the node. However, the EAR library collects
per core and per-process metrics so it will be available in next versions.

Q: OK, so will | get per-thread metrics on Hybrid MPI+OpenMP apps?
A: Unfortunately no, you won't.

EAR does not provide metrics at thread level at this moment. For hybrid applications, EAR will provide metrics for
each MPI process. You can run OpenMP apps with EARL, but you'll get process metrics too.

Generated by Doxygen

96 FAQs

16.2 Using EAR flags with SLURM plug-in

Q: How to see EAR configuration and metrics at runtime?

A: Use ——ear-verbose=1 flag in your submission command (e.g., srun, mpirun) to enable verbosity.
Check the user guide to see how to tune EAR configuration at submission time.

Q: Why EAR flags are not working?

A: The following list of EAR flags are only allowed to Authorized users (contact with your system administrator):

* ——ear-cpufreq

e ——ear-tag

* ——ear-learning
* ——ear-policy-th
* ——ear-policy %

+ It depends on the system administrator whether this flag is restricted to authorized users. Check next ques-
tion.

Below there are ear . conf fields that specify the list of authorized users/accounts/groups:
AuthorizedUsers=userl,user2

AuthorizedAccounts=accl,acc2,acc3

AuthorizedGroups=xx,yy

If a user is not authorized, non-working flags is the expected behaviour.

Q: Why is a different energy policy other than the selected one being applied? | validated it with
——ear-verbose=1.

A: The selected policy may not be enabled for all users.
Energy policies can be configured to be enabled to all users or not. Contact with your system administrator.

Check policy configuration (ear.conf) and user authorization (ear.conf).
#Enabled to all users

Policy=monitoring Settings=0 DefaultFreg=2.4 Privileged=0

#Enabled to authorized users

Policy=monitoring Settings=0 DefaultFreqg=2.4 Privileged=1

If not enabled or not authorized therefore this is is the expected behaviour.

Q: How to disable the EAR library explicitly?

A: Use —ear=off flag at submission time.

Q: Can | apply EAR settings to all runs (e.g., srun, mpirun) inside a batch script?

A: Yes, you can provide EAR flags to the batch scheduler integration by setting EAR options on the header of your

batch script. For example, in SLURM systems:

#!/bin/bash

#SBATCH -N 1

#SBATCH -ear-policy=min_time # application 1 and 2 will run with min_time

srun applicationl

srun --ear-verbose=1 application2 # This step will show EAR messages.

Generated by Doxygen

16.4 Jobs executed without the EAR Library: Basic Job accounting 97

Q: How can | know which energy policies are installed?

A: Type srun —-help. The output will show which policies you can provide with the flag ——ear-policy.

It is possible that non-authorized users are not allowed to select EAR policy. Contact with your system administrator.
Q: How to set EAR flags with mpirun if | run my application with Intel MPI1?

A: Depending on the Intel MPI version. Check the user-guide.

Before version 2019, mpirun had 2 parameters to specify SLURM options.

mpirun -bootstrap=slurm -bootstrap-exec-args="--ear-verbose=1"

Since version 2019, SLURM options must be specified using environment variables:
export I_MPI_HYDRA_BOOTSTRAP=slurm
export I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS="--ear-verbose=1"

Q: How to set EAR flags with mpirun if | run my application with OpenMPI?

A: OpenMPI needs an extra support when srun is not used. EAR's erun command must be used.

mpirun erun -ear-policy=min_energy --program=application
Q: How to collect paraver traces?

A: Use the environment variables to enable the trace collection and to specify the path.
SLURM_EAR_TRACE_PLUGINSEAR_INSTALL_PATH/lib/plugins/tracer/tracer_paraver.so
SLURM_EAR_TRACE_PATH=TRACES_PARAVER/

16.3 Using additional MPI profiling libraries/tools

EAR uses the LD_PRELOAD mechanism to be loaded and the PMPI API for a transparent loading. In order to be
compatible with other profiling libraries EAR is not replacing the MPI symbols, it just calls the next symbol in the
list. So it is compatible with other tools or profiling libraries. In case of conflict, the EARL can be disabled by setting
——ear=off flag at submission time.

16.4 Jobs executed without the EAR Library: Basic Job accounting

For applications not executed with the EARL loaded (e.g., srun is not used or programming models or applications
not loaded by default with EARL), EAR provides a default monitoring. In this case a subset of metrics will be
reported to the Databse:

Metric Unit
Accumulated DC energy Joules
Accumulated DRAM energy Joules
Accumulated CPU package energy | Joules
EDP Energy—Delay Product

Maximum DC node power detected | Watts

Minimum DC node power detected | Watts

Execution time Seconds
CPU average frequency kHzx
CPU default frequency kHzx

Generated by Doxygen

98 FAQs

» The unit showed by eacct output is GHz.

DC node energy includes the CPU and GPU energy if there are. These metrics are reported per node, Job and
Step IDs, so they can be seen per job and job and step when using eacct command.

16.5 Troubleshooting
User asks for application metrics with eacct command and no information appears in some of the columns
in the output.

This means EARL was not loaded with the application or the application fails before the MPI_Finalize call, nor
reporting application data.

After some time, user asks for an application metrics with eacct and application is not reported.

Try again after some minutes (applications are not reported immediately).

Generated by Doxygen

Chapter 17

Known issues

» The execution of Python+MPI+EAR is not 100% automatic. Given Python is not a compiled language, the
EAR loader cannot detect the MPI version automatically. Check in the uUser guide how to deal with this use
case.

Generated by Doxygen

100 Known issues

Generated by Doxygen

	1 Introduction
	1.1 License
	1.2 Publications

	2 User guide
	2.1 Use cases
	2.1.1 MPI applications
	2.1.1.1 Hybrid MPI + (OpenMP, CUDA, MKL) applications
	2.1.1.2 Python MPI applications
	2.1.1.3 Running MPI applications on SLURM systems

	2.1.2 Non-MPI applications
	2.1.2.1 Python
	2.1.2.2 OpenMP, CUDA and Intel MKL

	2.1.3 Other application types or frameworks
	2.1.4 Using EAR inside Singularity containers

	2.2 Retrieving EAR data
	2.3 EAR job submission flags
	2.3.1 CPU frequency selection
	2.3.2 GPU frequency selection

	2.4 Examples
	2.4.1 srun examples
	2.4.2 sbatch + EARL + srun
	2.4.3 EARL + mpirun
	2.4.3.1 Intel MPI
	2.4.3.2 OpenMPI

	2.5 EAR job Accounting (eacct)
	2.5.1 Usage examples

	2.6 Job energy optimization: EARL policies

	3 EAR commands
	3.1 EAR job Accounting (eacct)
	3.2 EAR system energy Report (ereport)
	3.2.1 Examples
	3.2.2 EAR Control (econtrol)

	3.3 Database commands
	3.3.1 edb_create
	3.3.2 edb_clean_pm
	3.3.3 edb_clean_apps

	3.4 erun
	3.5 ear-info

	4 Environment variables
	4.1 Loading EAR Library
	4.1.1 EAR_LOADER_APPLICATION
	4.1.2 EAR_LOAD_MPI_VERSION

	4.2 Report plug-ins
	4.2.1 EAR_REPORT_ADD

	4.3 Verbosity
	4.3.1 EARL_VERBOSE_PATH

	4.4 Frequency management
	4.4.1 EAR_GPU_DEF_FREQ
	4.4.2 EAR_JOB_EXCLUSIVE_MODE
	4.4.3 Controlling Uncore/Infinity Fabric frequency
	4.4.3.1 EAR_SET_IMCFREQ
	4.4.3.2 EAR_MAX_IMCFREQ and EAR_MIN_IMCFREQ

	4.4.4 Load Balancing
	4.4.5 Support for Intel(R) Speed Select Technology
	4.4.5.1 EAR_PRIO_TASKS
	4.4.5.2 EAR_PRIO_CPUS

	4.4.6 Disabling EAR's affinity masks usage

	4.5 Data gathering
	4.5.1 EAR_GET_MPI_STATS
	4.5.2 EAR_TRACE_PLUGIN
	4.5.3 EAR_TRACE_PATH
	4.5.4 REPORT_EARL_EVENTS
	4.5.4.1 Event types

	5 Admin guide
	5.1 EAR Components
	5.2 Quick Installation Guide
	5.2.1 EAR Requirements
	5.2.2 Compiling and installing EAR
	5.2.3 Deployment and validation
	5.2.3.1 Monitoring: Compute node and DB
	5.2.3.2 Monitoring: EAR plugin

	5.2.4 EAR Library versions: MPI vs. Non-MPI

	5.3 Installing from RPM
	5.3.1 Installation content
	5.3.2 RPM requirements

	5.4 Starting Services
	5.5 Updating EAR with a new installation
	5.6 Next steps

	6 Installation from source
	6.1 Requirements
	6.2 Compilation and installation guide summary
	6.3 Configure options
	6.4 Pre-installation fast tweaks
	6.5 Library distributions/versions
	6.6 Other useful flags
	6.7 Installation content
	6.8 Fine grain tuning of EAR options
	6.9 Next step

	7 Architecture
	7.1 EAR Node Manager
	7.1.1 Overview
	7.1.2 Requirements
	7.1.3 Configuration
	7.1.4 Execution
	7.1.5 Reconfiguration

	7.2 EAR Database Manager
	7.2.1 Configuration
	7.2.2 Execution

	7.3 EAR Global Manager
	7.3.1 Power capping
	7.3.2 Configuration
	7.3.3 Execution

	7.4 The EAR Library
	7.4.1 Overview
	7.4.2 Configuration
	7.4.3 Usage
	7.4.4 Policies
	7.4.5 EAR API

	7.5 EAR Loader
	7.6 EAR SLURM plugin
	7.6.1 Configuration

	8 EAR configuration
	8.1 Configuration requirements
	8.1.1 EAR paths
	8.1.2 DB creation and DB server
	8.1.3 EAR SLURM plug-in

	8.2 EAR configuration file
	8.2.0.1 Database configuration
	8.2.1 EARD configuration
	8.2.2 EARDBD configuration
	8.2.3 EARL configuration
	8.2.4 EARGM configuration
	8.2.4.1 Common configuration
	8.2.4.2 EAR Authorized users/groups/accounts
	8.2.4.3 Energy tags

	8.2.5 Tags
	8.2.5.1 Power policies plug-ins

	8.2.6 Island description

	8.3 SLURM SPANK plug-in configuration file
	8.3.1 MySQL/PostgreSQL
	8.3.2 MSR Safe

	9 Learning phase
	9.1 Tools
	9.1.1 Examples

	10 EAR plug-ins
	10.1 Considerations

	11 EAR Powercap
	11.1 Node powercap
	11.2 Cluster powercap
	11.2.1 Soft cluster powercap
	11.2.2 Hard cluster powercap

	11.3 Possible powercap values
	11.4 Example configurations
	11.5 Valid configurations

	12 Report plugins
	12.1 Prometheus report plugin
	12.1.1 Requirements
	12.1.2 Installation
	12.1.3 Configuration

	12.2 Examon
	12.2.1 Compilation and installation

	12.3 DCDB
	12.3.1 Compilation and configuration

	12.4 Sysfs Report Plugin
	12.4.1 Namespace Format
	12.4.2 Metric File Naming Format
	12.4.3 Metrics reported

	13 EAR Database
	13.1 Tables
	13.1.1 Application information
	13.1.2 System monitoring
	13.1.3 Events
	13.1.4 EARGM reports
	13.1.5 Learning phase

	13.2 Creation and maintenance
	13.3 Database creation and ear.conf
	13.4 Information reported and ear.conf
	13.5 Updating from previous versions
	13.5.1 From EAR 4.2 to 4.3
	13.5.2 From EAR 4.1 to 4.2
	13.5.3 From EAR 3.4 to 4.0
	13.5.4 From EAR 3.3 to 3.4

	13.6 Database tables description
	13.6.1 Jobs
	13.6.2 Applications
	13.6.3 Signatures
	13.6.4 Power_signatures
	13.6.5 GPU_signatures
	13.6.6 Loops
	13.6.7 Events
	13.6.8 Global_energy
	13.6.9 Periodic_metrics
	13.6.10 Periodic_aggregations

	14 Supported systems
	14.1 CPU Models
	14.2 GPU models
	14.3 Schedulers

	15 Changelog
	15.1 EAR 4.3
	15.2 EAR 4.2
	15.3 EAR4.1.1
	15.4 EAR 4.1
	15.5 EAR 4.0
	15.6 EAR 3.4
	15.7 EAR 3.3
	15.8 EAR 3.2

	16 FAQs
	16.1 EAR general questions
	16.2 Using EAR flags with SLURM plug-in
	16.3 Using additional MPI profiling libraries/tools
	16.4 Jobs executed without the EAR Library: Basic Job accounting
	16.5 Troubleshooting

	17 Known issues

